Pickering emulsions stabilized by composite nanoparticles prepared from lysozyme and dopamine modified poly (γ-glutamic acid): effects of pH value on the stability of the emulsion and the activity of lysozyme

RSC Advances ◽  
2015 ◽  
Vol 5 (110) ◽  
pp. 90651-90658 ◽  
Author(s):  
Cuige Zhang ◽  
Ye Zhu ◽  
Rongli Zhang ◽  
Yanling Xie ◽  
Kangjing Wang ◽  
...  

Novel composite nanoparticles were prepared from lysozyme and modified poly (γ-glutamic acid) to be used as emulsifiers for Pickering emulsions. Increasing the pH value of the solution facilitated the formation of gel-like emulsions suitable for releasing lysozyme.

2013 ◽  
Vol 319 ◽  
pp. 233-238 ◽  
Author(s):  
De Hai Yu ◽  
Zhao Yun Lin ◽  
You Ming Li

Octadecenylsuccinic anhydride (ODSA) is an internal sizing agent used to hydrophobize paper and paper board in the process of papermaking. Nano-montmorillonite (MMT) particles and n-dodecane were used as the stabilizer to prepare stable ODSA Pickering emulsions. The effects of pH value, particle concentration, hydrolysis resistance and paper sizing performance of the ODSA Pickering emulsions were investigated. It was found that the stability of ODSA emulsions first increased and then decreased as the pH value decreased. More stable oil-in-water (o/w) emulsion can be made using 10 vol.% n-dodecane. Particle concentration was linked to the formation of particle films at oil–water interface, with a required minimum particle concentration of 1.5 wt.%. Paper sizing degree analysis indicated that the ODSA Pickering emulsions show increased hydrolysis resistance and good sizing performance.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2982
Author(s):  
Yue Bao ◽  
Hanyu Xue ◽  
Yang Yue ◽  
Xiujuan Wang ◽  
Hansong Yu ◽  
...  

Modified okara insoluble dietary fiber (OIDF) has attracted great interest as a promising Pickering emulsifier. At present, the modification methods are mainly physicochemical methods, and the research on microbial modified OIDF as stabilizer is not clear. In this work, modified OIDF was prepared by yeast Kluyveromyces marxianus fermentation. The potential of modified OIDF as a Pickering emulsifier and the formation and stability of OIDF-Pickering emulsions stabilized by modified OIDF were characterized, respectively. The results showed that the specific surface area, hydrophilicity, and electronegativity of the modified OIDF were all enhanced compared with the unmodified OIDF. The existence of the network structure between droplets is the key to maintain the stability of the emulsions, as indicated by Croy-Scanning Electron Microscope (Croy-SEM) and rheological properties measurements. The stability of OIDF-Pickering emulsions was evaluated in terms of storage time, centrifugal force, pH value, and ionic strength (NaCl). Moreover, the OIDF-Pickering emulsions stabilized by modified OIDF showed better stability. These results will contribute to the development of efficient OIDF-based emulsifiers, expand the application of emulsions in more fields, and will greatly improve the high-value utilization of okara by-products.


TAPPI Journal ◽  
2014 ◽  
Vol 13 (9) ◽  
pp. 51-60
Author(s):  
DENNIS VOSS ◽  
HANS-JOACHIM PUTZ ◽  
SAMUEL SCHABEL

The need for deinking mills to reduce their fresh water consumption has resulted in higher loads of various contaminants in the process water. Lower recovered paper quality also leads to higher contamination levels in the mills. This higher load has an influence on achievable target brightness. The objective of the work was to determine and explain the main reasons for relatively poor deinked pulp quality or poor deinking potential based on the influence of recovered paper composition and process water quality. The process water parameters significantly affect the deinking potential of recovered paper. The test results showed the negative effects of increased water hardness. For standard recovered paper mixtures, flotation selectivity is higher with increasing flotation pH-value. Good results were realized for standard recovered paper with low hardness, low surface tension, and high pH-value. The results for recovered paper containing flexo newsprint could be slightly improved with low hardness, low surface tension, and low pH-value. The results of the test program using design of experiments showed interacting effects of pH-value and surface tension on luminosity and flotation selectivity.


2016 ◽  
Vol 5 (9) ◽  
pp. P521-P525 ◽  
Author(s):  
Hong Zhang ◽  
Shuying Cheng ◽  
Jinling Yu ◽  
Yunfeng Lai ◽  
Haifang Zhou ◽  
...  
Keyword(s):  
Ph Value ◽  

Processes ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 50
Author(s):  
Barbara D. Weiß ◽  
Michael Harasek

This review studies unwanted precipitation reactions, which can occur in SO2 absorption processes using a magnesium hydroxide slurry. Solubility data of potential salts in the MgO-CaO-SO2-H2O system are evaluated. The reviewed data can serve as a reliable basis for process modeling of this system used to support the optimization of the SO2 absorption process. This study includes the solubility data of MgSO3, MgSO4, Mg(OH)2, CaSO3, CaSO4, and Ca(OH)2 as potential salts. The solubility is strongly dependent on the state of the precipitated salts. Therefore, this review includes studies on the stability of different forms of the salts under different conditions. The solubility data in water over temperature serve as a base for modeling the precipitation in such system. Furthermore, influencing factors such as pH value, SO2 content and the co-existence of other salts are included and available data on such dependencies are reviewed. Literature data evaluated by the International Union of Pure and Applied Chemistry (IUPAC) are revisited and additional and newer studies are supplemented to obtain a solid base of accurate experimental values. For temperatures higher than 100 °C the available data are scarce. For a temperature range from 0 to 100 °C, the reviewed investigations and data provide a good base to evaluate and adapt process models for processes in order to map precipitations issues accurately.


2021 ◽  
Vol 829 (1) ◽  
pp. 012021
Author(s):  
Dongfang Yang ◽  
Danfeng Yang ◽  
Haixia Li ◽  
Dong Lin ◽  
Qi Wang
Keyword(s):  
Ph Value ◽  

2012 ◽  
Vol 239-240 ◽  
pp. 1573-1576
Author(s):  
Zhu Qing Gao ◽  
Xiao Dong Cai ◽  
Kai Cheng Ling

At different temperatures, the protonation constants of tannic acid and the complex apparent stability constants between tannic acid and VO2+ were determined by using pH potentimetric method. The results showed that the protonation constants and the complex apparent stability constants slightly decreased with the raising temperature. In accordance with the pH value in the tannin extract technology, the conditional stability constants of the complex were calculated on the basis of the acid effect of tannic acid and the hydrolysis effect of VO2+. It was found that pH greatly affected the stability constants of the complex , so pH must be strictly controlled in the tannin extract technology.


2020 ◽  
Vol 2020 ◽  
pp. 1-7
Author(s):  
Yu Zheng ◽  
Xudong Luo ◽  
Jinlong Yang ◽  
Wenlong Huo ◽  
Chi Kang

A novel approach is used for fabricating steel slag foam ceramics based on the particle-stabilized foaming method. In this work, steel slag was used as the raw material and propyl gallate (PG) was used as the surface modifier. For the first time, steel slag ceramic foams were successfully fabricated based on particle-stabilized foams. The results show that the stability of the ceramic foams was closely related to the pH value and PG concentration. The porosity and compressive strength could be controlled by changing the solid loading of steel slag and sintering temperature. The porosity of steel slag foam ceramics ranged from 85.6% to 62.53%, and the compressive strength was from 1.74 MPa to 10.42 MPa. The thermal conductivity of steel slag foam ceramics was only 0.067 W (m·K)−1, which shows that it could be used as a thermal insulation material.


2012 ◽  
Vol 454 ◽  
pp. 324-328
Author(s):  
Yan He ◽  
Ya Jing Liu ◽  
Yong Lin Cao ◽  
Li Xia Zhou

Infra-red absorption spectrometry, X-ray diffraction observations and characterization tests based on silicon molybdenum colorimetric method were used to investigate the optimal pH value controlling the stability of the silicic acid form. The experiment process was done by using sodium silicate as raw material. The results showed that the solution of silicate influenced the polymerization. The active silicic acid solution with a certain degree of polymerization was obtained by controlling the pH values.


Sign in / Sign up

Export Citation Format

Share Document