scholarly journals Rapid prototyping of microchannels with surface patterns for fabrication of polymer fibers

RSC Advances ◽  
2015 ◽  
Vol 5 (87) ◽  
pp. 71203-71209 ◽  
Author(s):  
Payton J. Goodrich ◽  
Farrokh Sharifi ◽  
Nastaran Hashemi

Microfluidic technology has provided innovative solutions to numerous problems, but the cost of fabricating microfluidic channels is impeding its expansion. We created multilayer microchannels significantly quicker and cheaper than current methods.

Author(s):  
Olga Vytvytska ◽  
Mykyt Pundyk

The purpose of the article. The purpose of the study is to substantiate the theoretical foundations and practical innovative solutions for the reuse of waste resources with a proposal for improved waste management technology with prospects for implementation in Ukraine. Research methodology: theoretical and practical aspects of the introduction and implementation of eco-management, because for Ukraine such an approach to the introduction of innovative processing technologies in enterprises is completely new. Methodical toolkit of substantiation of innovative decisions of reuse of resources from waste, structure of prime cost of the improved system for the Goloseevsky area. Kiev. Scientific novelty. It is proposed to optimize the existing garbage problem in most regions and replace waste trucks based on the method of the pneumatic system manufactured by Envac. The system allows you to reduce the cost of moving cargo over time sorting or disposal points. Conclusions. The introduction of innovative systems in Ukraine for the year saves UAH 34 billion 499 million, in addition, the sorting of household waste is gaining popularity, recycling tanks are being installed in cities, the population is beginning to treat waste with understanding, and a behavioral strategy has been introduced to stimulate waste recycling. In addition, the proposed technology of sorting raw materials allows you to sort up to 97% of household waste, and the rest to burn for energy. All this makes the development of the processing industry in Ukraine promising. Keywords: innovations, waste-free systems, secondary raw materials, energy, technology.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2935 ◽  
Author(s):  
Syed Shah ◽  
Sungjoon Lim

In this paper, a frequency reconfigurable quasi-Yagi dipole antenna is proposed by leveraging the properties of microfluidic technology. The proposed antenna comprises a metal-printed driven dipole element and three directors. To tune resonant frequencies, microfluidic channels are integrated into the driven element. To maintain a high gain for all the tuned frequencies, microfluidic channels are also integrated into the directors. Therefore, the length of the driven-element as well as directors can be controlled by injecting liquid metal in the microfluidic channels. The proposed antenna has the capability of tuning the frequency by varying the length of the metal-filled channels, while maintaining a high gain for all the tuned frequencies. The proposed antenna’s performance is experimentally demonstrated after fabrication. The injected amount of liquid metal into the microfluidic channels is controlled using programmable pneumatic micropumps. The prototype exhibits continuous tuning of the resonant frequencies from 1.8 GHz to 2.4 GHz; the measured peak gain of the proposed antenna is varied in the range of 8 dBi to 8.5 dBi. Therefore, continuous tuning with high gain is successfully demonstrated using liquid-metal-filled microfluidic channels.


Author(s):  
Terence W. Cavanaugh ◽  
Nicholas P. Eastham

Educational technologists are often asked to provide assistance in the identification or creation of assistive technologies for students. Individuals with visual impairments attending graduate schools are expected to be able to work with data sets, including reading, interpreting, and sharing findings with others in their field, but due to their impairments may not be able to work with standard displays. The cost and time involved in preparing adapted graphs based on student research data for individuals with visual impairments can be prohibitive. This chapter introduces a method for the rapid prototyping of tactile graphs for students to use in data analysis through the use of spreadsheets, internet-based conversion tools, and a 3D printer.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2257 ◽  
Author(s):  
Radu Saulescu ◽  
Mircea Neagoe ◽  
Codruta Jaliu

Most wind turbines (WT) are of the single-rotor type, which means they are simple, reliable and durable, but unlikely to convert more than 40% of the available wind energy. Different solutions are proposed to minimize WT energy loss and improve performance, such as the use of speed increasers, counter-rotating wind rotors or counter-rotating electric generators. Downsizing the design, saving weight and reducing the cost of WT conversion systems, while increasing their efficiency, have posed constant challenges to WT designers. Nevertheless, very little research in the field is concerned with, and partially recommends, the design of conversion systems. Therefore, the aim of this paper is to propose a specific algorithm for the conceptual synthesis of speed increasers integrated in WT conversion systems, starting with an inventory of all combinations of the main components of a conversion system that prove compatible for efficient functioning. The algorithm is structured in two sections: the first one includes a four-step approach to WT system design, while the second one follows a three-step procedure for identifying the speed increaser concept. Twenty-two variants of speed increasers are further generated and analyzed, four of which are innovative solutions proposed by the authors. The paper also provides guidelines for identifying the WT conversion system concept according to the circumstances of its application.


2018 ◽  
Vol 54 (39) ◽  
pp. 4923-4926 ◽  
Author(s):  
Jing Sun ◽  
Wenhui Zhou ◽  
Haibo Yang ◽  
Xue Zhen ◽  
Longfei Ma ◽  
...  

Completely transparent and flexible circuits have been developed using microfluidic technology with ultraprecise pattern control and facile processing.


2019 ◽  
Vol 46 (8) ◽  
pp. 669-676 ◽  
Author(s):  
Niel C. Van Engelen ◽  
Michael J. Tait ◽  
Dimitrios Konstantinidis

Unbonded fiber-reinforced elastomeric isolators (FREIs) were initially proposed as a potential low-cost alternative to conventional steel-reinforced elastomeric isolators (SREIs). FREIs are similar to SREIs but comparatively lightweight as the steel components from SREIs have been replaced with polymer fibers in FREIs. Subsequent experimental investigations identified that unbonded FREIs have desirable characteristics for seismic isolation due to the unbonded application and fiber reinforcement. The unbonded application removes mechanical fasteners, relying on friction to transfer horizontal loads, further reducing the cost. However, the unbonded application also introduces limitations, being susceptible to slip in certain loading conditions and being incapable of resisting tensile forces. In this paper, the concept of partially bonded FREIs (PB-FREIs), a proposed solution to these limitations, is further investigated experimentally with nominal vertical tensile loads. It is shown that PB-FREIs can achieve similar properties to an unbonded FREI with a vertical compressive load.


2012 ◽  
Vol 248 ◽  
pp. 551-554
Author(s):  
Xin Liu ◽  
Wei Fan

Because of the small workbench molding size of rapid prototyping equipment, the processing of large rapid prototyping samples is a problem during the new product development process, for example, motorcycle covering. The relative merits of accuracy engraving technique and rapid prototyping technique during processing are discussed. The method combining accuracy engraving machine and rapid prototyping machine to processing new motorcycle cover samples is proposed. And the surface data segmentation technique based on features is adopt to divide the large rapid prototyping sample reasonably, and then the small parts are collaged after respectively processing, so the problem of large rapid prototyping sample cannot once molding is solved, the speed of new product development is accelerated, the cost of new product development is decreased, the rapid manufacturing is realized. This method has been applied to the processing of new motorcycle cover samples and the application method is expounded.


Author(s):  
Hsiu-hung Chen ◽  
Dayong Gao

The manipulation of particles and cells in micro-fluids, such as cell suspensions, is a fundamental task in Lab-on-a-Chip applications. According to their analysis purposes in either the pre- or post-processing stage, particles/cells flowing inside a microfluidic channel are handled by means of enriching, trapping, separating or sorting. In this study, we report the use of patterning flows produced by a series of grooved surfaces with different geometrical setups integrated into a microfluidic device, to continuously manipulate the flowing particles (5 to 20 μm in diameters) of comparable sizes to the depth of the channel in ways of: 1) concentrating, 2) focusing, and 3) potential separating. The device is fabricated using soft lithographic techniques and is composed of inlets, microfluidic channels, and outlets for loading, manipulating and retrieving cell suspensions, respectively. Such fabrication methods allow rapid prototyping of micron or submicron structures with multiple layers and replica molding on those fabricated features in a clear polymer. The particles are evenly distributed in the entrance of the microchannel and illustrate the enriching, focusing, or size-selective profiles after passing through the patterning grooves. We expect that the techniques of manipulating cell suspensions from this study can facilitate the development of cell-based devices on 1) the visualization of counting, 2) the visualization of sizing, and 3) the particle separating.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (7) ◽  
pp. 1689-1696 ◽  
Author(s):  
Douglas R. Vogus ◽  
Vincent Mansard ◽  
Michael V. Rapp ◽  
Todd M. Squires

Recent advancements in microfluidic technology have allowed for the generation and control of complex chemical gradients; however, few general techniques can measure these spatio-temporal concentration profiles without fluorescent labeling.


2007 ◽  
Vol 35 (6) ◽  
pp. 1621-1623 ◽  
Author(s):  
A.M. Hickey ◽  
L. Marle ◽  
T. McCreedy ◽  
P. Watts ◽  
G.M. Greenway ◽  
...  

The exploitation of enzymes for biotransformation reactions for the production of new and safer drug intermediates has been the focus of much research. While a number of enzymes are commercially available, their use in an industrial setting is often limited to reactions that are cost-effective and they are rarely investigated further. However, the development of miniaturized flow reactor technology has meant that the cost of such research, once considered cost- and time-inefficient, would be much less prohibitive. The use of miniaturized flow reactors for enzyme screening offers a number of advantages over batch enzyme assay systems. Since the assay is performed on a miniaturized scale, enzyme, substrate and cofactor quantities are significantly reduced, thus reducing the cost of laboratory-scale investigations. Since flow reactors use microfluidic systems, where the substrate and products flow out of the system, the problems of substrate inhibition and product inhibition encountered by some enzymes are avoided. Quite often, enzymes fulfil a single-use function in biotransformation processes; however, enzyme immobilization allows enzyme reuse and often helps to increase enzyme stability. We have used an aminoacylase enzyme with potential use for industrial biotransformation reactions and have successfully immobilized it in miniaturized flow reactors. This L-aminoacylase is from the thermophilic archaeon Thermococcus litoralis. Two approaches to enzyme immobilization have been examined, both involving enzyme cross-linking. The first reactor type has used monoliths, to which the enzyme was attached, and the second contained previously cross-linked enzyme trapped using frits, in the microfluidic channels. Two different microreactor designs were used in the investigation: microreactor chips for the monoliths and capillary flow reactors for the cross-linked enzyme. These systems allowed passage of the substrate and product through the system while retaining the aminoacylase enzyme performing the catalytic conversion. The enzyme has been successfully immobilized and used to produce stable biocatalytic microreactors that can be used repeatedly over a period of several months.


Sign in / Sign up

Export Citation Format

Share Document