scholarly journals Powering tyrosol antioxidant capacity and osteogenic activity by biocatalytic polymerization

RSC Advances ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 2993-3002 ◽  
Author(s):  
Stefano Antenucci ◽  
Lucia Panzella ◽  
Hermes Farina ◽  
Marco Aldo Ortenzi ◽  
Enrico Caneva ◽  
...  

Oxidative polymerization of tyrosol afforded a mixture of oligomers (OligoTyr) which proved to be more active than tyrosol as antioxidant and as stimulator of alkaline phosphatase (ALP) activity when loaded into polylactic acid (PLA) scaffolds.

2021 ◽  

Abstract Marine organisms have attracted considerable attention in recent years. In this study, peptides with osteogenic activity from Pinctada martensii were isolated and identified. Additionally, the effects of the hydrolysates on MC3T3-E1 cell proliferation and differentiation were evaluated using the MTT and alkaline phosphatase (ALP) assays, respectively. First, trypsin, pancreatin, and neutral protease were used to hydrolyse the intact shellfish. The hydrolysates with the greatest effects on osteoblast proliferation and ALP activity were separated and purified. Second, fraction WP2 was isolated and purified using a Sephadex G-25 column. WP2, which had the highest osteogenic activity, increased cell growth by 48.57 ± 0.05% and ALP activity by 6.27 ± 0.07 mU. Finally, four novel peptides were identified in WP2 (FDNEGKGKLPEEY, IVLDSGDGVTH, IVLDSGDGVSH, and SSENSDLQRQ) by Orbitrap Fusion Lumos Tribrid orbital liquid chromatography-mass spectrometry. Our findings revealed that P. martensii contains peptides with potential osteogenic activity.


2000 ◽  
Vol 63 (9) ◽  
pp. 1258-1261 ◽  
Author(s):  
M. F. SCINTU ◽  
E. DAGA ◽  
A. LEDDA

The alkaline phosphatase (ALP) activity test has been used since 1935 to assess the effectiveness of pasteurization. Different analytical methods exist for detecting ALP in milk. Unfortunately, there is little information about ALP activity in ewe's milk. The aim of this study was to assess and compare the official European method (spectrophotometric method) and the Fluorophos method (fluorometric method) regarding their use in ewe's milk. Bulk ewe's milk samples were taken from a flock and from three different dairies. A portion of the original sample was pasteurized at 63°C for 30 min in a circulating bath; another portion was heated to and kept at 95°C for about 2 min, and 0.1% (vol/vol) of raw milk was added. The samples obtained were analyzed in duplicate using the spectrophotometric and fluorometric methods. The relation between ALP activity determined by the two methods was characterized by the following equation: Y = 1.34 + 0.0039X (where Y = ALP in μg of phenol per ml of milk and X = ALP in mU/liter; R2 = 91.5%). Precision parameters (repeatability [r], standard deviation of repeatability [sr], and relative standard deviation of repeatability [RSDr]) for both methods were calculated. The values of RSDr for the Fluorophos method were 4.30 for pasteurized milk and 2.96 for 0.1% raw milk, close to the value indicated by Rocco in whole cow's milk (RSDr = 4.4). The repeatability for the official method (r = 2.16) was close to that indicated for whole cow's milk (r = 2).


1997 ◽  
Vol 60 (5) ◽  
pp. 525-530 ◽  
Author(s):  
C. J. PAINTER ◽  
R. L. BRADLEY

Milk is routinely tested for proper pasteurization. The Scharer and Fluorophos methods, among others, test for residual alkaline phosphatase (ALP) activity to assure proper pasteurization. Until recently there were no tests available to accurately detect residual ALP activity levels below the U.S. legal limit of 1 μg of phenol or 350 mU of ALP per liter of milk. The new Fluorophos method can detect accurately residual ALP activity levels as low as 10 mU/liter. The Fluorophos method was used to investigate residual ALP activity levels in several fluid milk products. The milk products were thermally processed under various time and temperature protocols below, at, and above current U.S. Food and Drug Administration-mandated heat treatments for fluid milk and milk products. The data established values for residual ALP activity in milks pasteurized under high-temperature short-time (HTST) and low-temperature long-time (LTLT) treatments. The mean ALP activities for whole, 2% lowfat, 1% lowfat, skim, half and half, and chocolate-flavored milks thermally processed at the legal minimum HTST pasteurization treatment are 169.7 ± 12.3, 145.2 ± 9.3, 98.6 ± 8.9, 72.5 ± 4.2, 38.4 ± 4.6 and 157.3 ± 6.5 mU/liter, respectively. The mean ALP activities generated at the legal minimum LTLT pasteurization treatment are 81.8 ± 4.8, 66.4 ± 5.9, 56.4 ± 2.1, 39.1 ± 3.9, 35.0 ± 1.2 and 91.3 ± 7.7 mU/liter, respectively. The values for all milks pasteurized at the legal minimum heat treatment were significantly below the current legal cutoff for residual ALP activity of 350 mU/liter of milk or milk product.


1992 ◽  
Vol 38 (12) ◽  
pp. 2546-2551 ◽  
Author(s):  
V O Van Hoof ◽  
A T Van Oosterom ◽  
L G Lepoutre ◽  
M E De Broe

Abstract Early treatment of patients with malignant disease and liver or bone metastasis may increase their survival time. We have used the activity patterns of liver and bone isoenzymes of alkaline phosphatase (ALP), separated by agarose gel electrophoresis, to detect early metastasis. We studied ALP isoenzyme patterns in a background population of 101 patients with no evidence of any disease that might influence this pattern; a healthy reference population (n = 330); and the following three groups of patients: 143 with malignant disease, 47 with nonmalignant liver disease, and 22 with nonmalignant bone disease. Cutoff and predictive values of liver ALP, high-molecular-mass (high-M(r)) ALP, and bone ALP were established for detecting liver and bone metastasis. The positive predictive value of liver and high-M(r) ALP was higher than that of total ALP in detecting liver metastasis, but liver and high-M(r) ALP did not enable us to differentiate between malignant and nonmalignant liver disease. Total ALP activity was of slightly more value than liver and high-M(r) ALP in enabling us to rule out liver metastasis. From bone ALP activity we could not distinguish between nonmalignant bone disease and bone metastasis. The negative predictive value of bone ALP in the diagnosis of bone metastasis was low, but its positive predictive value was high and superior to that of total ALP.


1992 ◽  
Vol 263 (3) ◽  
pp. G371-G379
Author(s):  
B. L. Black ◽  
J. O. Rogers

The fluorescent probe fura-2 was used to assay Ca2+ levels in epithelial cell suspensions from embryonic and neonatal chick duodenum. Cell preparations maintained high viability, completely hydrolyzed fura-2/AM to fura-2, retained 92% of cellular fura-2 within the cytoplasmic compartment, and gave low autofluorescence values during assay. Fura-2 leakage from loaded cells occurred at all ages, but could be corrected for in subsequent calculations of cellular Ca2+. Cytoplasmic Ca2+ concentration was 76-80 nM in cells from 14- to 16-day embryonic intestine, rose significantly to 92-98 nM at 17-20 days, and reached 209 nM at 1-day post-hatch when assayed in buffers containing 1.3 mM Ca2+. The developmental rise in cytoplasmic Ca2+ was accompanied by an enhanced ability of cells to maintain a constant Ca2+ concentration at increased levels of extracellular Ca2+ and by a highly correlated rise in alkaline phosphatase (ALP) activity. Epithelial Ca2+ subsequently decreased to the "adult" value of 133-142 nM and was constant along the crypt-villus axis of neonatal intestine. These results verify that fura-2 can be used to compare baseline cytoplasmic Ca2+ values of epithelial cells from developing intestine, reveal that significant changes in Ca2+ homeostasis occur during ontogeny, and suggest that epithelial Ca2+ may modulate ALP activity during the differentiation of embryonic enterocytes.


2001 ◽  
Vol 280 (3) ◽  
pp. G510-G517 ◽  
Author(s):  
Takeshi Nikawa ◽  
Madoka Ikemoto ◽  
Kaori Tokuoka ◽  
Shigetada Teshima ◽  
David H. Alpers ◽  
...  

We previously showed that vitamin A upregulated the expression of bone-type alkaline phosphatase (ALP) in fetal rat small intestine and rat intestinal IEC-6 cells. In this study, we examined interactions between retinoic acid (RA) and several growth factors/cytokines on the isozyme expression in IEC-6 cells. Epidermal growth factor and interleukins (ILs)-2, -4, -5, and -6 completely blocked the RA-mediated increase in ALP activity. In contrast, IL-1β markedly increased the activity, protein, and mRNA of the bone-type ALP only when RA was present. IL-1β and/or RA did not change the type 1 IL-1 receptor transcript level, whereas IL-1β enhanced the RA-induced expressions of retinoic acid receptor-β (RAR-β) and retinoid X receptor-β (RXR-β) mRNAs and RA-mediated RXR response element binding. The synergism of IL-1β and RA on ALP activity was completely blocked by protein kinase C (PKC) inhibitors. Our results suggest that IL-1β may modify the ALP isozyme expression in small intestinal epithelial cells by stimulating PKC-dependent, RAR-β- and/or RXR-β-mediated signaling pathways.


1991 ◽  
Vol 274 (3) ◽  
pp. 673-678 ◽  
Author(s):  
M Gianni ◽  
M Studer ◽  
G Carpani ◽  
M Terao ◽  
E Garattini

All-trans retinoic acid (RA) induces alkaline phosphatase (ALP) activity by 3-8-fold in murine F9 teratocarcinoma cells, in parallel with their differentiation towards primitive endoderm. The elevation of ALP activity is associated with increases in the amounts of liver/bone/kidney-type ALP protein and the respective transcript. These effects of RA are due to activation of ALP gene transcription rather than to an increase in the half-life of the mRNA. Induction of ALP mRNA does not require de novo protein synthesis, since it is not blocked by treatment with cycloheximide. Dibutyryl cyclic AMP, which is known to induce further differentiation of F9 cells from the primitive to the parietal endoderm, blocks the induction of ALP mRNA by RA.


1989 ◽  
Vol 35 (2) ◽  
pp. 223-229 ◽  
Author(s):  
J R Farley ◽  
E Kyeyune-Nyombi ◽  
N M Tarbaux ◽  
S L Hall ◽  
D D Strong

Abstract Earlier we described a kinetic assay for quantifying skeletal alkaline phosphatase (ALP) isoenzyme activity in serum. The precision of the assay depends on including ALP standards for the skeletal, hepatic, intestinal, and placental isoenzymes. We wondered whether human osteosarcoma cells could provide an efficient alternative to human bone or Pagetic serum as a source of the skeletal ALP standard. ALP activities prepared from five human osteosarcoma cell lines were compared with a bone-derived ALP standard with respect to heat stability and sensitivity to chemical effectors. Two of the cell lines (SaOS-2 and TE-85) contained ALP activities that resembled the bone-derived standard. We selected SaOS-2 cells for additional evaluation (as a potential source of isoenzyme standard), because they contained 40-50 times more ALP activity than did the TE-85 cells. To include the SaOS-2 cell-derived ALP activity in the quantitative isoenzyme assay, we diluted the enzyme in a solution containing heat-inactivated (i.e., ALP-negative) human serum. Surprisingly, this dilution caused a 60-125% increase in maximum enzyme activity. In the quantitative assay of ALP isoenzyme in serum, the SaOS-2 derived ALP was indistinguishable from the serum skeletal ALP standard, with respect to the above criteria and assay variations. Evidently ALP from SaOS-2 cells is suited as a standard for measuring skeletal ALP activity in this assay.


2018 ◽  
Vol 10 (44) ◽  
pp. 5341-5346 ◽  
Author(s):  
Xionghong Tan ◽  
Zheng Li ◽  
Yanlin Du ◽  
Aixian Zheng ◽  
Yongyi Zeng ◽  
...  

A MnO2nanosheets–o-phenylenediamine (OPDA) oxidative system was developed for detecting ALP activity selectively, sensitively and conveniently.


1995 ◽  
Vol 41 (6) ◽  
pp. 853-857 ◽  
Author(s):  
V O Van Hoof ◽  
M Martin ◽  
P Blockx ◽  
A Prove ◽  
A Van Oosterom ◽  
...  

Abstract Agarose electrophoresis (Isopal, Beckman) and an immunoradiometric assay (IRMA) involving specific monoclonal antibodies (Ostase, Hybritech), two methods for the quantification of serum bone alkaline phosphatase (ALP, EC 3.1.3.1), a marker of osteoblastic activity, were compared in 293 patients: 79 with end-stage renal failure treated with hemodialysis and 214 with malignant disease. Overall correlation between the two methods was good (r = 0.92), except (a) for low values of bone ALP and (b) in some samples with high total liver ALP activity--both due to considerable cross-reactivity of the anti-bone ALP antibodies of the Ostase kit with liver ALP. This interference was not constant and was not evenly distributed across all concentrations of bone ALP. Low bone ALP determined with the IRMA (< or = 5 micrograms/L) was confirmed by electrophoresis (< or = 21 U/L), but bone ALP activity determined by electrophoresis to be low (< or = 21 U/L) was not correlated with the IRMA results. After standardizing our results by computing z-values for bone ALP, delta z (= zOstase - zIsopal) was significantly correlated with liver ALP activity (r = 0.73, P < 0.0001). We conclude that the IRMA for quantifying bone ALP is acceptable as a screening method. However, when high values for bone ALP are found with the Ostase method, confirmation by electrophoresis remains mandatory to rule out cross-reactivity with high amounts of liver ALP. For detecting low bone ALP activities, electrophoresis remains the method of choice.


Sign in / Sign up

Export Citation Format

Share Document