Isolation and identification of peptides from Pinctada martensii with osteogenic activity

2021 ◽  

Abstract Marine organisms have attracted considerable attention in recent years. In this study, peptides with osteogenic activity from Pinctada martensii were isolated and identified. Additionally, the effects of the hydrolysates on MC3T3-E1 cell proliferation and differentiation were evaluated using the MTT and alkaline phosphatase (ALP) assays, respectively. First, trypsin, pancreatin, and neutral protease were used to hydrolyse the intact shellfish. The hydrolysates with the greatest effects on osteoblast proliferation and ALP activity were separated and purified. Second, fraction WP2 was isolated and purified using a Sephadex G-25 column. WP2, which had the highest osteogenic activity, increased cell growth by 48.57 ± 0.05% and ALP activity by 6.27 ± 0.07 mU. Finally, four novel peptides were identified in WP2 (FDNEGKGKLPEEY, IVLDSGDGVTH, IVLDSGDGVSH, and SSENSDLQRQ) by Orbitrap Fusion Lumos Tribrid orbital liquid chromatography-mass spectrometry. Our findings revealed that P. martensii contains peptides with potential osteogenic activity.

Biologia ◽  
2013 ◽  
Vol 68 (2) ◽  
Author(s):  
Guang-Wen Chen ◽  
Ke-Xue Ma ◽  
De-Zeng Liu

AbstractThe aims of this work are to provide some properties of alkaline phosphatase (ALP) in the planarian Dugesia japonica and detect its activity in response to different stressors, as well as to introduce renatured SDS-PAGE to study enzyme activity in planarians. Our results indicate that ALPs in planarians are mainly membrane-bound form, identified as three mainly enzyme-bands (approximately MW 260 kD, 180 kD, 160 kD, respectively). Under our experimental conditions, ALPs activity had no apparent changes in response to low concentration of Hg2+ (25 μg L−1) and Pb2+ (125 μg L−1, 250 μg L−1) exposure, but were severely inhibited in response to high concentration of Hg2+ (50 μg L−1, 150 μg L−1, 300 μg L−1) and Pb2+ (500 μg L−1, 1000 μg L−1) exposure. Mild heat shock (25°C for 2 days) elevated ALP activity, but severely heat shock (25°C for 2 days, followed by 30°C for 2 days and 32°C for 2 days) inactivated ALP activity. Interestingly, ALP and other cytosolic phosphatases (MW from ∼45 kD to ∼60 kD) activity increased noticeably during the early stage of planarians regeneration, which may be involved in cell proliferation and differentiation. Contrary to regeneration, prolonged starvation suppressed ALP activity. The above findings provide valuable information about the role of ALP in planarian regeneration and for its use as an indicator in ecotoxicology.


2004 ◽  
Vol 16 (2) ◽  
pp. 145
Author(s):  
H.R. Kim ◽  
J.K. Kang ◽  
J.T. Yoon ◽  
H.H. Seong ◽  
C.S. Park ◽  
...  

Practical application of animal cloning by somatic cell nuclear transfer (SCNT) has been hampered by extremely low success rate. Most clones die before birth and survivors frequently display abnormalities. It is speculated that epigenetic reprogramming is somehow defective in reconstituted embryos (Reik W et al., 2003 Theriogenology 59 21–32; Han YM et al., 2003 Theriogenology 59, 33–44). It is likely that placental anomalies are directly or indirectly responsible for the death of cloned fetus and neonates. To address this question, we analyzed protein patterns of two placentae obtained after postnatal death of fetuses from SCNT of Korean Native Cattle and two normal placentae obtained after birth of AI fetuses. Global proteomics approach was employed by using 2-D gel electrophoresis and mass spectrometry to separate the different placenta proteins. Proteins within an isoelectric point range of 4.0 to 7.0 and a molecular weight range of 20–100kDa were analyzed by means of 2-D gel electrophoresis with three replications of each sample. The stained gels were scanned and calibrated at an optical resolution of 63.5μm/pixel using a GS-710 (Bio-Rad Laboratories, Hercules, CA, USA). Approximately 480 spots were detected in placental 2-D gel stained with coomassie-blue. Then, image analysis by Malanie III (Swiss Institute for Bioinformatics, Geneva, Switzerland) was performed to detect variations in protein spots between normal and SCNT placentae. In the comparison of normal and SCNT samples, at least 15 protein spots were identified as regulated differentially. Using MALDI-TOF-MS (PerSeptive Biosystems, Framinham, MA, USA), 10 spots were identified as up-regulated proteins in SCNT placentae including BPLP-I, Rho GDI 2, osteoclast stimulating factors, SM22, 60S Acidic Ribosomal and Protein P2, whereas five spots were down-regulated proteins such as Peroxiredoxin 2. Mass spectrometry with sequencing was used to further analyze the uncharacterized proteins. Most identified proteins in this analysis appeared to be related to cell proliferation and differentiation, fetal growth and development or metabolism. Further, specific functions of proteins in placenta have been investigated at the molecular levels during pregnancy.


2019 ◽  
Vol 2019 ◽  
pp. 1-19 ◽  
Author(s):  
Peng Huang ◽  
Hongwen Ke ◽  
Yang Qiu ◽  
Mingchen Cai ◽  
Jialin Qu ◽  
...  

Qingre Lidan Decoction (QRLDD), a classic precompounded prescription, is widely used as an effective treatment for cholelithiasis clinically. However, its chemical profile and mechanism have not been characterized and elucidated. In the present study, a rapid, sensitive, and reliable ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry method was established for comprehensively identifying the major constituents in QRLDD. Furthermore, a network pharmacology strategy based on the chemical profile was applied to clarify the synergetic mechanism. A total of 72 compounds containing flavonoids, terpenes, phenolic acid, anthraquinones, phenethylalchohol glycosides, and other miscellaneous compounds were identified, respectively. 410 disease genes, 432 compound targets, and 71 related pathways based on cholelithiasis-related and compound-related targets databases as well as related pathways predicted by the Kyoto Encyclopedia of Genes and Genomes database were achieved. Among these pathways and genes, pathway in cancer and MAPK signaling pathway may play an important role in the development of cholelithiasis. EGFR may be a crucial target in the conversion of gallstones to gallbladder carcinoma. Regulation of PRKCB/RAF1/MAP2K1/MAPK1 is associated with cell proliferation and differentiation. Thus, the fingerprint coupled with network pharmacology analysis could contribute to simplifying the complex system and providing directions for further research of QRLDD.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jiannan Liu ◽  
Mingjiang Jin ◽  
Zhen Zhang ◽  
Lihuang Wu ◽  
Xuejun Jin ◽  
...  

To evaluate the effects of different Ti surface micro-nanopermeable structures on osteoblast proliferation and differentiation and explore related mechanisms, hybrid technology of sandblast, acid etching, and hydrothermal (HT) was used to form the micro-nanopermeable surface of Ti. Scanning electron microscopy (SEM), surface profiler, and contact angle meter were utilized to assess the surface morphology, roughness, and hydrophilicity. MTT, SEM, alkaline phosphatase (ALP) activity assay, and real-time PCR were performed to investigate proliferation, adhesion and spreading, and differentiation of MC3T3-E1 cells grown on polished Ti (control), sandblast + acid etching- (SLA-) treated Ti, and SLA + HT-treated Ti. MAPK signal pathway activity was evaluated by Western blotting. The results showed that SLA + HT could result in not only formation of microscale groove containing submicroscale and nanoscale porous structures in Ti samples but also rough and hydrophilic surface. SLA + HT treatment has the best effects on cell adhesion and spreading. Significantly increased levels of ALP activity and osteogenic genes including Alp, Ocn, Opn, Runx2, and Bsp, as well as p38 but not ERK phosphorylation, were found in the SLA + HT group. In conclusion, sandblast, acid etching, and hydrothermal treatment on Ti regulates osteoblast differentiation, while activation of the MAPK p38 signaling pathway served as the mechanism.


2020 ◽  
Vol 12 (4) ◽  
pp. 455-460
Author(s):  
Yuan Wu ◽  
Cuizhong Liu ◽  
Ming Gao ◽  
Qiang Liang ◽  
Yu Jiang

This study aimed to observe the effect of titanium nanomaterials on osteoblastsin vitro. Osteoblasts were identified using histochemical staining, and they were examined using an MTT (3-(4,5Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay to determine the proliferation and differentiation of osteoblasts. In addition, we observed the effect of titanium nanomaterials on the function of osteoblasts. Compared with the control group, titanium nanomaterials promoted the growth, proliferation, and differentiation of osteoblasts. Our findings showed that titanium nanomaterials can significantly promote the proliferation of osteoblasts and enhance their osteogenic activity.


2017 ◽  
Vol 1 (3) ◽  
Author(s):  
Geng Min

Objectives: Bone formation and bone resorption continuouslyoccur in bone tissue to prevent the accumulation of old bone, thisbeing called bone remodeling. Osteoblasts especially play a crucialrole in bone formation through the differentiation and proliferation.Therefore, in this study, we investigated the effects of collagenhydrolysate Glycine-Prolyl-Hydroxyproline (Gly-Pro-Hyp) onosteoblastic proliferation and differentiation in MC3T3-E1 cells.Methods: Four groups including control, Gly-Pro-Hyp 20 μM,100 μM, 500 μM groups were set up in this study. Cells werecultured with blank control medium or Gly-Pro-Hyp of thedifferent dosages for 24 h. CCK 8 assay was analyzed cellproliferation. Assay of Alkaline phosphatase (ALP)activity wasanalyzed osteoblast differentiation. The expression levels of ALP,Col 1, Runx 2 and Osterix in MC3T3-E1 cells were measured byWestern blot. Results: The results indicated the treatment of Gly-Pro-Hyp promoted the proliferation of MC3T3-E1 cells andimproved ALP activity. In addition, cells treated with Gly-Pro-Hypsignificantly upregulated protein expression of ALP, type 1collagen, runt-related transcription factor 2 and osterix.Conclusion: The results demonstrate that Gly-Pro-Hyp promotedifferentiation inducement and proliferation of MC3T3-E1 cells,therefore may help to elucidate the transcriptional mechanism ofbone formation and possibly lead to the development of bone-forming drugs.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Shimao Yang ◽  
Fei Gao ◽  
Min Li ◽  
Zhennan Gao

In literature, antiosteoporotic effects of Angelica sinensis root have been confirmed, but the impact of Angelica sinensis polysaccharide (ASP) on osteoblastic or adipogenic distinction of BMSCs is limited. This paper aimed to explore the role of ASP on proliferation and differentiation of rat BMSCs. Rat BMSCs were subjected to isolation and identification through flow cytometry. The proliferation of rat BMSCs under ASP was performed by CCK-8 kit. Measures of osteogenesis under different concentrations of ASP were detected by using alizarin red staining for mesenchymal cells differentiation and ALP activity assay to identify ALP activity. Quantitative RT-PCR was selected to identify osteoblastic or adipogenic biomarkers from a genetic perspective. Likewise, we have evaluated measures of indicators of Wnt/β-catenin signal. ASP significantly promoted the proliferation, increased osteogenesis, and decreased adipogenesis of rat BMSCs within the limit of 20–60 mg/L in a dose-dependent manner but was suppressed at 80 mg/L. The expression of cyclin D1 and ß-catenin showed a considerable rise over the course of ASP induced osteogenesis. Dickkopf 1 (DKK1) suppressed the regulation of rat BMSCs differentiation through the mediation of ASP. We have observed that ASP upregulated the osteogenic but downregulated adipogenic differentiation of BMSCs, and our findings help to contribute to effective solutions for treating bone disorders.


RSC Advances ◽  
2016 ◽  
Vol 6 (4) ◽  
pp. 2993-3002 ◽  
Author(s):  
Stefano Antenucci ◽  
Lucia Panzella ◽  
Hermes Farina ◽  
Marco Aldo Ortenzi ◽  
Enrico Caneva ◽  
...  

Oxidative polymerization of tyrosol afforded a mixture of oligomers (OligoTyr) which proved to be more active than tyrosol as antioxidant and as stimulator of alkaline phosphatase (ALP) activity when loaded into polylactic acid (PLA) scaffolds.


Sign in / Sign up

Export Citation Format

Share Document