A conductive liquid crystal via facile doping of an n-type benzodifurandione derivative

2015 ◽  
Vol 3 (13) ◽  
pp. 6929-6934 ◽  
Author(s):  
Bin Zhao ◽  
Chang-Zhi Li ◽  
Sheng-Qiang Liu ◽  
Jeffrey J. Richards ◽  
Chu-Chen Chueh ◽  
...  

Liquid crystalline n-type molecular semiconductors exhibit interesting molecular order/charge-transport correlations, and allow n-doping with phosphonium salt to afford high conductivities.

Author(s):  
Beatriz Feringán ◽  
Roberto Termine ◽  
Attilio Golemme ◽  
Jose M. Granadino-Roldan ◽  
Amparo Navarro ◽  
...  

Despite the fact that triphenylamine derivatives have been widely explored as hole-transporting materials, studies on charge transport properties in the liquid crystal phase have been overlooked. Here, it is reported...


2019 ◽  
Vol 21 (34) ◽  
pp. 18686-18698 ◽  
Author(s):  
K. Kondratenko ◽  
Y. Boussoualem ◽  
D. P. Singh ◽  
R. Visvanathan ◽  
A. E. Duncan ◽  
...  

Novel composites of mesogenic organic semiconductor and electron acceptor exhibit charge transport dynamics strongly correlated to the liquid crystal order.


Author(s):  
Christopher Viney

Light microscopy is a convenient technique for characterizing molecular order in fluid liquid crystalline materials. Microstructures can usually be observed under the actual conditions that promote the formation of liquid crystalline phases, whether or not a solvent is required, and at temperatures that can range from the boiling point of nitrogen to 600°C. It is relatively easy to produce specimens that are sufficiently thin and flat, simply by confining a droplet between glass cover slides. Specimens do not need to be conducting, and they do not have to be maintained in a vacuum. Drybox or other controlled environmental conditions can be maintained in a sealed chamber equipped with transparent windows; some heating/ freezing stages can be used for this purpose. It is relatively easy to construct a modified stage so that the generation and relaxation of global molecular order can be observed while specimens are being sheared, simulating flow conditions that exist during processing. Also, light only rarely affects the chemical composition or molecular weight distribution of the sample. Because little or no processing is required after collecting the sample, one can be confident that biologically derived materials will reveal many of their in vivo structural characteristics, even though microscopy is performed in vitro.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6789
Author(s):  
Katarzyna A. Rutkowska ◽  
Anna Kozanecka-Szmigiel

Tunable diffraction gratings and phase filters are important functional devices in optical communication and sensing systems. Polarization gratings, in particular, capable of redirecting an incident light beam completely into the first diffraction orders may be successfully fabricated in liquid crystalline cells assembled from substrates coated with uniform transparent electrodes and orienting layers that force a specific molecular distribution. In this work, the diffraction properties of liquid crystal (LC) cells characterized by a continually rotating cycloidal director pattern at the cell substrates and in the bulk, are studied theoretically by solving a relevant set of the Euler-Lagrange equations. The electric tunability of the gratings is analyzed by estimating the changes in liquid crystalline molecular distribution and thus in effective birefringence, as a function of external voltage. To the best of our knowledge, such detailed numerical calculations have not been presented so far for liquid crystal polarization gratings showing a cycloidal director pattern. Our theoretical predictions may be easily achieved in experimental conditions when exploiting, for example, photo-orienting material, to induce a permanent LC alignment with high spatial resolution. The proposed design may be for example, used as a tunable passband filter with adjustable bandwidths, thus allowing for potential applications in optical spectroscopy, optical communication networks, remote sensing and beyond.


2002 ◽  
Vol 80 (8) ◽  
pp. 1162-1165 ◽  
Author(s):  
B Henrissat ◽  
G K Hamer ◽  
M G Taylor ◽  
R H Marchessault

A series of dodecyl 1-thio-β-D-glycosides has been synthesized and characterized (DSC, NMR, CP MAS, X-ray diffraction) as possible new marking materials with liquid-crystalline properties. These compounds undergo solid to liquid crystal phase transitions at various temperatures, which depend on the nature of the carbohydrate part of the structure. Their liquid-crystalline phases show extreme shear thinning behaviour.Key words: liquid crystal, powder X-ray diffraction, phase transition, thioglycoside, solid-state NMR, marking material


ChemInform ◽  
2005 ◽  
Vol 36 (44) ◽  
Author(s):  
Panos Vlachos ◽  
Bassam Mansoor ◽  
Matthew P. Aldred ◽  
Mary O'Neill ◽  
Stephen M. Kelly

1971 ◽  
Vol 8 (1) ◽  
pp. 93-109
Author(s):  
A. C. NEVILLE ◽  
B. M. LUKE

The protein in the oothecal glands of praying mantids (Sphodromantis tenuidentata, Miomantis monacha) exists in the form of lamellar liquid crystalline spherulites, which coalesce as they flow out of a punctured gland tubule. Electron micrographs of sections of these spherulites after fixation show parabolic patterns of an electron-light component, set in a continuous matrix of protein. Such patterns arise in helicoidal systems (e.g. arthropod cuticle) and microdensitometric scans of the matrix show a rhythmical electron-density variation consistent with helicoidal structure. Double spiral patterns identical to those seen in liquid crystal spherulites are illustrated. These properties resemble those of cholesteric liquid crystals. The constructional units appear to be molecular rather than fibrillar as described by previous authors. The helicoidal architecture arises by self-assembly in the gland lumen. Lamellar surface structures self-assembled spontaneously on glass coverslips when the protein was left to stand for several days. When heated to 55 °C, the birefringent liquid crystalline protein abruptly changes to an isotropic gel, with associated loss of parabolic patterning in electron micrographs and of the rhythmical electron-density variation on microdensitometric scans. This behaviour is compared to the formation of gelatin from collagen, in terms of the randomization of an originally ordered secondary structure.


2007 ◽  
Vol 17 (25) ◽  
pp. 2607 ◽  
Author(s):  
Fabien Nekelson ◽  
Hirosato Monobe ◽  
Motoo Shiro ◽  
Yo Shimizu

Sign in / Sign up

Export Citation Format

Share Document