Stokes shift/emission efficiency trade-off in donor–acceptor perylenemonoimides for luminescent solar concentrators

2015 ◽  
Vol 3 (15) ◽  
pp. 8045-8054 ◽  
Author(s):  
Riccardo Turrisi ◽  
Alessandro Sanguineti ◽  
Mauro Sassi ◽  
Brett Savoie ◽  
Atsuro Takai ◽  
...  

Careful selection of the donor in PMIs provides the best trade-off between luminescence and Stokes shifts.

Molecules ◽  
2021 ◽  
Vol 26 (18) ◽  
pp. 5428
Author(s):  
Xheila Yzeiri ◽  
Massimo Calamante ◽  
Alessio Dessì ◽  
Daniele Franchi ◽  
Andrea Pucci ◽  
...  

Organic fluorophores have found broad application as emitters in luminescent solar concentrators (LSCs) for silicon photovoltaics. In particular, the preparation of organic conjugated systems with intense light-harvesting ability, emissions in the deep-red and NIR regions, and large Stokes shift values represent a very challenging undertaking. Here, we report a simple and easy way to prepare three symmetrical donor–acceptor–donor (DAD) organic-emitting materials based on a thienopyrazine core. The central core in the three dyes was modified with the introduction of aromatic substituents, aiming to affect their optical properties. The fluorophores were characterized by spectroscopic studies. In all cases, visible-NIR emissions with large Stokes shifts were found, highlighting these molecules as promising materials for the application in LSCs.


2019 ◽  
Author(s):  
Guanpeng Lyu ◽  
James Kendall ◽  
Ilaria Meazzini ◽  
Eduard Preis ◽  
Sebnem Baysec ◽  
...  

<div><div><div><p>Luminescent solar concentrators (LSCs) are solar-harvesting devices fabricated from transparent waveguide that is doped or coated with lumophores. Despite their potential for architectural integration, the optical efficiency of LSCs is often limited by incomplete harvesting of solar radiation and aggregation-caused quenching (ACQ) of lumophores in the solid state. Here, we demonstrate a multi-lumophore LSC design which circumvents these challenges through a combination of non-radiative Förster energy transfer (FRET) and aggregation-induced emission (AIE). The LSC incorporates a green-emitting poly(tetraphenylethylene), p-O-TPE, as an energy donor and a red-emitting perylene bisimide molecular dye (PDI-Sil) as the energy acceptor, within an organic-inorganic hybrid di-ureasil waveguide. Steady-state photoluminescence studies demonstrate that the di-ureasil host induced AIE from the p-O-PTE donor polymer, leading to a high photoluminescence quantum yield (PLQY) of ~45% and a large Stokes shift of ~150 nm. Covalent grafting of the PDI-Sil acceptor to the siliceous domains of the di-ureasil waveguide also inhibits non-radiative losses by preventing molecular aggregation. Due to the excellent spectral overlap, FRET was shown to occur from p-O-TPE to PDI-Sil, which increased with acceptor concentration. As a result, the final LSC (4.5 cm x 4.5 cm x 0.3 cm) with an optimised donor- acceptor ratio (1:1 by wt%) exhibited an internal photon efficiency of 20%, demonstrating a viable design for LSCs utilising an AIE-based FRET approach to improve the solar-harvesting performance.</p></div></div></div>


2019 ◽  
Author(s):  
Guanpeng Lyu ◽  
James Kendall ◽  
Eduard Preis ◽  
Sebnem Baysec ◽  
Ullrich Scherf ◽  
...  

<div><div><div><p>Luminescent solar concentrators (LSCs) are solar-harvesting devices fabricated from transparent waveguide that is doped or coated with lumophores. Despite their potential for architectural integration, the optical efficiency of LSCs is often limited by incomplete harvesting of solar radiation and aggregation-caused quenching (ACQ) of lumophores in the solid state. Here, we demonstrate a multi-lumophore LSC design which circumvents these challenges through a combination of non-radiative Förster energy transfer (FRET) and aggregation-induced emission (AIE). The LSC incorporates a green-emitting poly(tetraphenylethylene), p-O-TPE, as an energy donor and a red-emitting perylene bisimide molecular dye (PDI-Sil) as the energy acceptor, within an organic-inorganic hybrid di-ureasil waveguide. Steady-state photoluminescence studies demonstrate that the di-ureasil host induced AIE from the p-O-PTE donor polymer, leading to a high photoluminescence quantum yield (PLQY) of ~45% and a large Stokes shift of ~150 nm. Covalent grafting of the PDI-Sil acceptor to the siliceous domains of the di-ureasil waveguide also inhibits non-radiative losses by preventing molecular aggregation. Due to the excellent spectral overlap, FRET was shown to occur from p-O-TPE to PDI-Sil, which increased with acceptor concentration. As a result, the final LSC (4.5 cm x 4.5 cm x 0.3 cm) with an optimised donor- acceptor ratio (1:1 by wt%) exhibited an internal photon efficiency of 20%, demonstrating a viable design for LSCs utilising an AIE-based FRET approach to improve the solar-harvesting performance.</p></div></div></div>


2019 ◽  
Author(s):  
Guanpeng Lyu ◽  
James Kendall ◽  
Ilaria Meazzini ◽  
Eduard Preis ◽  
Sebnem Baysec ◽  
...  

<div><div><div><p>Luminescent solar concentrators (LSCs) are solar-harvesting devices fabricated from transparent waveguide that is doped or coated with lumophores. Despite their potential for architectural integration, the optical efficiency of LSCs is often limited by incomplete harvesting of solar radiation and aggregation-caused quenching (ACQ) of lumophores in the solid state. Here, we demonstrate a multi-lumophore LSC design which circumvents these challenges through a combination of non-radiative Förster energy transfer (FRET) and aggregation-induced emission (AIE). The LSC incorporates a green-emitting poly(tetraphenylethylene), p-O-TPE, as an energy donor and a red-emitting perylene bisimide molecular dye (PDI-Sil) as the energy acceptor, within an organic-inorganic hybrid di-ureasil waveguide. Steady-state photoluminescence studies demonstrate that the di-ureasil host induced AIE from the p-O-PTE donor polymer, leading to a high photoluminescence quantum yield (PLQY) of ~45% and a large Stokes shift of ~150 nm. Covalent grafting of the PDI-Sil acceptor to the siliceous domains of the di-ureasil waveguide also inhibits non-radiative losses by preventing molecular aggregation. Due to the excellent spectral overlap, FRET was shown to occur from p-O-TPE to PDI-Sil, which increased with acceptor concentration. As a result, the final LSC (4.5 cm x 4.5 cm x 0.3 cm) with an optimised donor- acceptor ratio (1:1 by wt%) exhibited an internal photon efficiency of 20%, demonstrating a viable design for LSCs utilising an AIE-based FRET approach to improve the solar-harvesting performance.</p></div></div></div>


2019 ◽  
Author(s):  
Guanpeng Lyu ◽  
James Kendall ◽  
Ilaria Meazzini ◽  
Eduard Preis ◽  
Sebnem Baysec ◽  
...  

<div><div><div><p>Luminescent solar concentrators (LSCs) are solar-harvesting devices fabricated from transparent waveguide that is doped or coated with lumophores. Despite their potential for architectural integration, the optical efficiency of LSCs is often limited by incomplete harvesting of solar radiation and aggregation-caused quenching (ACQ) of lumophores in the solid state. Here, we demonstrate a multi-lumophore LSC design which circumvents these challenges through a combination of non-radiative Förster energy transfer (FRET) and aggregation-induced emission (AIE). The LSC incorporates a green-emitting poly(tetraphenylethylene), p-O-TPE, as an energy donor and a red-emitting perylene bisimide molecular dye (PDI-Sil) as the energy acceptor, within an organic-inorganic hybrid di-ureasil waveguide. Steady-state photoluminescence studies demonstrate that the di-ureasil host induced AIE from the p-O-PTE donor polymer, leading to a high photoluminescence quantum yield (PLQY) of ~45% and a large Stokes shift of ~150 nm. Covalent grafting of the PDI-Sil acceptor to the siliceous domains of the di-ureasil waveguide also inhibits non-radiative losses by preventing molecular aggregation. Due to the excellent spectral overlap, FRET was shown to occur from p-O-TPE to PDI-Sil, which increased with acceptor concentration. As a result, the final LSC (4.5 cm x 4.5 cm x 0.3 cm) with an optimised donor- acceptor ratio (1:1 by wt%) exhibited an internal photon efficiency of 20%, demonstrating a viable design for LSCs utilising an AIE-based FRET approach to improve the solar-harvesting performance.</p></div></div></div>


2017 ◽  
Vol 1 (11) ◽  
pp. 2271-2282 ◽  
Author(s):  
Ilaria Meazzini ◽  
Camille Blayo ◽  
Jochen Arlt ◽  
Ana-Teresa Marques ◽  
Ullrich Scherf ◽  
...  

We test the potential of resonance energy transfer to enhance the performance of conjugated copolyelectrolyte donor–acceptor luminescent solar concentrators immobilised within a photoactive organic–inorganic ureasil waveguide.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 451 ◽  
Author(s):  
Ana Frias ◽  
Marita Cardoso ◽  
Ana Bastos ◽  
Sandra Correia ◽  
Paulo André ◽  
...  

The integration of photovoltaic (PV) elements in urban environments is gaining visibility due to the current interest in developing energetically self-sustainable buildings. Luminescent solar concentrators (LSCs) may be seen as a solution to convert urban elements, such as façades and windows, into energy-generation units for zero-energy buildings. Moreover, LSCs are able to reduce the mismatch between the AM1.5G spectrum and the PV cells absorption. In this work, we report optically active coatings for LSCs based on lanthanide ions (Ln3+ = Eu3+, Tb3+)-doped surface functionalized ionosilicas (ISs) embedded in poly(methyl methacrylate) (PMMA). These new visible-emitting films exhibit large Stokes-shift, enabling the production of transparent coatings with negligible self-absorption and large molar extinction coefficient and brightness values (~2 × 105 and ~104 M−1∙cm−1, respectively) analogous to that of orange/red-emitting organic dyes. LSCs showed great potential for efficient and environmentally resistant devices, with optical conversion efficiency values of ~0.27% and ~0.34%, respectively.


2019 ◽  
Vol 55 (21) ◽  
pp. 3160-3163 ◽  
Author(s):  
Paolo Della Sala ◽  
Nunzio Buccheri ◽  
Alessandro Sanzone ◽  
Mauro Sassi ◽  
Placido Neri ◽  
...  

The use of [n]CPP derivatives as luminophores in LSC-devices minimises reabsorption losses.


2016 ◽  
Vol 18 (6) ◽  
pp. 064010 ◽  
Author(s):  
Rowan W MacQueen ◽  
Murad J Y Tayebjee ◽  
James E A Webb ◽  
Alexander Falber ◽  
Pall Thordarson ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Chenchen Yang ◽  
Jun Zhang ◽  
Wei-Tao Peng ◽  
Wei Sheng ◽  
Dianyi Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document