Lithium storage properties of in situ synthesized Li2FeSiO4 and LiFeBO3 nanocomposites as advanced cathode materials for lithium ion batteries

2015 ◽  
Vol 3 (46) ◽  
pp. 23368-23375 ◽  
Author(s):  
Lin Hu ◽  
Jinlong Yang ◽  
Ibrahim Saana Amiinu ◽  
Xiaochun Kang ◽  
Wei Zhang ◽  
...  

The kinetics towards charge transfer and lithium ion diffusion are effectively enhanced with in situ adding small amounts of LiFeBO3, leading to a remarkably improved charge–discharge performance of Li2FeSiO4 as advanced cathode materials for lithium ion batteries.

RSC Advances ◽  
2015 ◽  
Vol 5 (47) ◽  
pp. 37367-37376 ◽  
Author(s):  
Ting-Feng Yi ◽  
Jin-Zhu Wu ◽  
Mei Li ◽  
Yan-Rong Zhu ◽  
Ying Xie ◽  
...  

Ce and CeO2in situ modified Li4Ti5O12 with fast charge–discharge performance for lithium-ion batteries were prepared by a solid-state method. The improved performance are found to be due to the increased ionic and electronic conductivity.


Ionics ◽  
2019 ◽  
Vol 26 (2) ◽  
pp. 1057-1061
Author(s):  
Youzuo Hu ◽  
Xingquan Liu

AbstractOne-dimensional (1D) α-LiFeO2 nanorods are successfully prepared via a low-temperature solid-state reaction from α-FeOOH nanorods synthesized by hydrothermal process and used as cathode materials in lithium-ion batteries. As cathode material for lithium-ion batteries, the nanorods can achieve a high initial specific capacity of 165.85 mAh/g at 0.1 C for which a high capacity retention of 81.65% can still be obtained after 50 cycles. The excellent performance and cycling stability are attributed to the unique 1D nanostructure, which facilitates the rapid electron exchange and fast lithium-ion diffusion between electrolyte and cathode materials.


RSC Advances ◽  
2018 ◽  
Vol 8 (34) ◽  
pp. 19335-19340 ◽  
Author(s):  
Cunliang Zhang ◽  
Yanmei Liu ◽  
Jian Li ◽  
Kai Zhu ◽  
Zhe Chen ◽  
...  

Li3V2(PO4)3@Carbon nanocrystals exhibit superior lithium storage properties due to the shortened lithium-ion diffusion length and the enhanced surface electronic conductivity.


2015 ◽  
Vol 17 (47) ◽  
pp. 32033-32043 ◽  
Author(s):  
Jing Wang ◽  
Yangyang Yu ◽  
Bing Li ◽  
Tao Fu ◽  
Dongquan Xie ◽  
...  

The Li2TiO3-coated LiNi0.5Co0.2Mn0.3O2 (LTO@NCM) cathode materials are synthesized via an in situ coprecipitation method to improve the electrochemical performance of NCM.


2019 ◽  
Vol 953 ◽  
pp. 121-126
Author(s):  
Zhe Chen ◽  
Quan Fang Chen ◽  
Sha Ne Zhang ◽  
Guo Dong Xu ◽  
Mao You Lin ◽  
...  

High energy density and rechargeable lithium ion batteries are attracting widely interest in renewable energy fields. The preparation of the high performance materials for electrodes has been regarded as the most challenging and innovative aspect. By utilizing a facile combustion synthesis method, pure nanostructure LiNi0.5Mn1.5O4 cathode material for lithium ion batteries were successfully fabricated. The crystal phase of the samples were characterized by X-Ray Diffraction, and micro-morphology as well as electrochemistry properties were also evaluated using FE-SEM, electrochemical charge-discharge test. The result shows the fabricated LiNi0.5Mn1.5O4 cathode materials had outstanding crystallinity and near-spherical morphologies. That obtained LiNi0.5Mn1.5O4 samples delivered an initial discharge capacity of 137.2 mAhg-1 at the 0.1 C together with excellent cycling stability and rate capability as positive electrodes in a lithium cell. The superior electrochemical performance of the as-prepared samples are owing to nanostructure particles possessing the shorter diffusion path for Li+ transport, and the nanostructure lead to large contact area to effectively improve the charge/discharge properties and the rate property. It is demonstrated that the as-prepared nanostructure LiNi0.5Mn1.5O4 samples have potential as cathode materials of lithium-ion battery for future new energy vehicles.


Nanoscale ◽  
2020 ◽  
Vol 12 (28) ◽  
pp. 15157-15168
Author(s):  
Yucang Liang ◽  
Jonathan David Oettinger ◽  
Peng Zhang ◽  
Bin Xu

N-Doped carbon nano(micro)spheres have been rationally designed, successfully synthesized and used as anode materials for lithium-ion batteries, showing excellent lithium storage properties and superior reversibility.


Sign in / Sign up

Export Citation Format

Share Document