Study of the morphological evolution of vanadium pentoxide nanostructures under hydrothermal conditions

CrystEngComm ◽  
2016 ◽  
Vol 18 (39) ◽  
pp. 7636-7641 ◽  
Author(s):  
W. Avansi ◽  
C. L. P. Oliveira ◽  
C. Ribeiro ◽  
E. R. Leite ◽  
V. R. Mastelaro
2020 ◽  
Vol 219 ◽  
pp. 106636
Author(s):  
Lin Meng ◽  
Fei Huang ◽  
Xueqiu Wang ◽  
Wenyuan Gao ◽  
Bimin Zhang ◽  
...  

2009 ◽  
Vol 9 (8) ◽  
pp. 3626-3631 ◽  
Author(s):  
Waldir Avansi Jr. ◽  
Cauê Ribeiro ◽  
Edson R. Leite ◽  
Valmor R. Mastelaro

Author(s):  
C. M. Chun ◽  
A. Navrotsky ◽  
I. A. Aksay

Highly pure, stoichiometric, nanometer-sized, and fairly monodispersed anhydrous crystalline BaTiO3 particles are synthesized under hydrothermal conditions in a single process step without further heat treatment by reacting titanium isopropoxide [Ti(OC3H7)4] precursor in aqueous solutions of Ba(OH)2 at 80°C. Traditional considerations of solution hydrolysis, solute condensation, and nucleation only partly explain the generation of the “raspberry-like” BaTiO3 particles composed of 5∼10 nm primary crystalline particles. Consequently, the colloidal interaction of the precipitating particles and, therefore, controlled aggregation of freshly nucleated particles must be taken into account. Our TEM studies show aggregation growth of small subunits to form uniform, rounded polyhedral particles, suggesting colloidal stability may play a key role in controlling precipitate size and shape.In order to investigate the evidence supporting the aggregation growth, Ti(OC3H7)4 precursor (Aldrich) has been added to l.OM Ba(OH)2 solution and hydrothermally reacted at 80°C in polyethylene bottles. Four molecules of water and two hydroxyl ions attach through their oxygen atoms to the titanium of Ti(OC3H7)4 in a nucleophilic process.


2010 ◽  
Vol 312 (23) ◽  
pp. 3555-3559 ◽  
Author(s):  
Waldir Avansi ◽  
Cauê Ribeiro ◽  
Edson R. Leite ◽  
Valmor R. Mastelaro

Author(s):  
A. Legrouri

The industrial importance of metal catalysts supported on reducible oxides has stimulated considerable interest during the last few years. This presentation reports on the study of the physicochemical properties of metallic rhodium supported on vanadium pentoxide (Rh/V2O5). Electron optical methods, in conjunction with other techniques, were used to characterise the catalyst before its use in the hydrogenolysis of butane; a reaction for which Rh metal is known to be among the most active catalysts.V2O5 powder was prepared by thermal decomposition of high purity ammonium metavanadate in air at 400 °C for 2 hours. Previous studies of the microstructure of this compound, by HREM, SEM and gas adsorption, showed it to be non— porous with a very low surface area of 6m2/g3. The metal loading of the catalyst used was lwt%Rh on V2Q5. It was prepared by wet impregnating the support with an aqueous solution of RhCI3.3H2O.


Author(s):  
William A. Heeschen

Two new morphological measurements based on digital image analysis, CoContinuity and CoContinuity Balance, have been developed and implemented for quantitative measurement of morphology in polymer blends. The morphology of polymer blends varies with phase ratio, composition and processing. A typical morphological evolution for increasing phase ratio of polymer A to polymer B starts with discrete domains of A in a matrix of B (A/B < 1), moves through a cocontinuous distribution of A and B (A/B ≈ 1) and finishes with discrete domains of B in a matrix of A (A/B > 1). For low phase ratios, A is often seen as solid convex particles embedded in the continuous B phase. As the ratio increases, A domains begin to evolve into irregular shapes, though still recognizable as separate domains. Further increase in the phase ratio leads to A domains which extend into and surround the B phase while the B phase simultaneously extends into and surrounds the A phase.


2017 ◽  
Vol 4 (3) ◽  
pp. 43-49
Author(s):  
M. Miroshnychenko ◽  
O. Siabruk

Aim. The comparison of the effect of hydrothermal conditions and various agricultural practices on the emission of CO 2 from chernozems in the Left-Bank Forest-Steppe of Ukraine. Methods. The dynamics of the intensity of carbon dioxide emissions from chernozem calcic (typical chernozem – in Ukrainian classifi cation) was studied during the growing season of 2011–2012. The observations were based on two fi eld experiments with various methods of soil till- age (6–7 years from the beginning of the experiment) and fertilization systems (21–22 years from the beginning of the experiment). Particularly, plowing at 20–22 cm, disking at 10–12 cm, cultivation at 6–8 cm and direct seeding using Great Plains drill were studied among the soil tillage methods. Mineral system (N 45 P 50 K 45 ), organic system (manure 8 t/ha) and combined organic-mineral system (manure 8 t/ha + N 45 P 50 K 45 ) were studied among fertilization systems. The intensity of CO 2 fl ux was determined using the non-stationary respiratory chambers by the alkaline absorption method, with averaging of the results during the day and the frequency of once a month. Results. During the warm period, the emission of carbon dioxide from the soil changes dynamically depending on temperature and humidity. The maximum of emission coincides with the periods of warm summer showers in June-July, the minimum values are characteristic for the late autumn period. The total emission losses of carbon in chernozems over the vegetation period ranged from 480 to 910 kg/ha and varied depending on the methods of tillage ± (4.0–6.0) % and fertilization systems ± (3.8–7.1) %. The changes in the intensity of CO 2 emission from the soil under different methods of soil tillage are associated with hydrothermal regime and the depth of crop residues location. The biggest difference is observed im- mediately after tillage, but in the spring period the differences are only 12–25 %, and after drying of the top layer of soil become even less. Direct seeding technology provides the greatest emission of CO 2 from chernozem, which is fa- cilitated by better water regime and more complete mineralization of plant residues on the soil surface. Annual losses of carbon are the least under disking of soil at 10–12 cm. The changes in the intensity of CO 2 emission from the soil under different fertilization systems are associated with the involvement of the additional organic matter from plant residues and manure to the microbiological decomposition. The greatest emission was observed under the organic- mineral fertilization system, which increased the loss of carbon by 7–8 % in comparison with the mineral system in the unfavorable hydrothermal year and by 11–15 % in the more favorable year. These differences are observed mainly during the fi rst half of the growing season when there is a clear tendency to increase the intensity of soil respiration. Conclusions. The hydrothermal conditions of the warm period of the year are decisive in the formation of the CO 2 emission fl ow from chernozems. Due to the improvement of agricultural practices, emissions might be reduced but not more that by 15 % of natural factor contribution.


2018 ◽  
Author(s):  
Andrea Pérez-Villa ◽  
Thomas Georgelin ◽  
Jean-François Lambert ◽  
Marie-Christine Maurel ◽  
François Guyot ◽  
...  

Understanding the mechanism of spontaneous formation of ribonucleotides under realistic prebiotic conditions is a key open issue of origins-of-life research. In cells, <i>de novo</i> and salvage nucleotide enzymatic synthesis combines 5-phospho-α -D-ribose-1-diphosphate ( α-PRPP) and nucleobases. Interestingly, these reactants are also known as prebiotically plausible compounds. Combining ab initio simulations with mass spectrometry experiments, we compellingly demonstrate that nucleobases and α -PRPP spontaneously combine, through the same facile mechanism, forming both purine and pyrimidine ribonucleotides, under mild hydrothermal conditions. Surprisingly, this mechanism is very similar to the biological one, and yields ribonucleotides with the same anomeric carbon chirality as in biological systems. These results suggest that natural selection might have optimized – through enzymes – a pre-existing ribonucleotide formation mechanism, carrying it forward to modern life forms.


Sign in / Sign up

Export Citation Format

Share Document