Electrochemical CO2 reduction with low overpotential by a poly(4-vinylpyridine) electrode for application to artificial photosynthesis

2017 ◽  
Vol 198 ◽  
pp. 409-418 ◽  
Author(s):  
Hohyun Jeong ◽  
Myung Jong Kang ◽  
Hyeyeong Jung ◽  
Young Soo Kang

Pyridine molecules have been used as a catalyst to reduce the activation energy of the CO2 reduction reaction. It has been reported that CO2 is reduced by pyridine catalysts at low overpotential around −0.58 V vs. SCE. Poly(4-vinylpyridine), which has pyridine functional groups shows similar catalytic properties to reduce CO2 at low overpotential like pyridinium catalysts. Different thickness of P(4-VP) coated Pt electrodes were analyzed to determine the catalytic properties for CO2 reduction. Cyclic voltammetry, chronoamperometry and electrochemical impedance spectroscopy methods showed the catalytic CO2 reduction properties of a P(4-VP)/Pt electrode. Thin P(4-VP)/Pt film showed a low current density of −0.16 mA cm−2 under CO2 atmosphere and the current density reached −0.45 mA cm−2 with increase of the P(4-VP) thickness. The increase of current density was explained by an increased surface concentration of adsorbed pyridinium groups of the thick P(4-VP) layer. Nyquist plots also showed decrease of impedance with increase of the P(4-VP) layer indicating fast charge transfer between Pt and the P(4-VP) layer due to the increase of hybrid ionic complex formation on the Pt surface. However, charge transfer is restricted when the P(4-VP) layer becomes more thick because of slowed protonation of pyridine groups adjacent to the Pt surface due to the suppressed permeability of electrolyte solution into the PVP membrane. This electrochemical observation provides a new aspect of P(4-VP) polymer for CO2 reduction.

Author(s):  
Yingchun Zhang ◽  
Changsheng Cao ◽  
Xintao Wu ◽  
Qi-Long Zhu

Bismuth (Bi)-based nanomaterials are considered as the promising electrocatalysts for electrocatalytic CO2 reduction reaction (CO2RR), but it is challenging to achieve high current density and selectivity in a wide potential...


Nano Research ◽  
2021 ◽  
Author(s):  
Yating Zhu ◽  
Xiaoya Cui ◽  
Huiling Liu ◽  
Zhenguo Guo ◽  
Yanfeng Dang ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Woong Choi ◽  
Joon Woo Park ◽  
Woonghyeon Park ◽  
Yousung Jung ◽  
Hyunjoon Song

Electrochemical CO2 reduction reaction (eCO2RR) has been considered one of the potential technologies to store electricity from renewable energy sources into chemical energy. For this aim, designing catalysts with high...


Author(s):  
Danni Zhou ◽  
Xinyuan Li ◽  
Huishan Shang ◽  
Fengjuan Qin ◽  
Wenxing Chen

Metal-organic framework (MOF) derived single-atom catalysts (SACs), featured unique active sites and adjustable topological structures, exhibit high electrocatalytic performance on carbon dioxide reduction reactions (CO2RR). By modulating elements and atomic...


Author(s):  
Xu Hu ◽  
Sai Yao ◽  
Letian Chen ◽  
Xu Zhang ◽  
Menggai Jiao ◽  
...  

Electrochemical CO2 reduction reaction (CO2RR) is a very important approach to realize sustainable development. Single-atom catalysts show advantages in both homogeneous and heterogeneous catalysis, and considerable progress has been made...


2019 ◽  
Vol 149 (3) ◽  
pp. 860-869 ◽  
Author(s):  
Amaha Woldu Kahsay ◽  
Kassa Belay Ibrahim ◽  
Meng-Che Tsai ◽  
Mulatu Kassie Birhanu ◽  
Soressa Abera Chala ◽  
...  

Author(s):  
Kailei Cao ◽  
Yujin Ji ◽  
Shuxing Bai ◽  
Xiaoqing Huang ◽  
Youyong Li ◽  
...  

The direct production of syngas via electrochemical CO2 reduction reaction (CO2RR) is a highly potential process for its environmental-friendly and product adjustability advantages. However, it is challenging to synthesize syngas...


Sign in / Sign up

Export Citation Format

Share Document