scholarly journals Preparation and comparison of bulk and membrane hydrogels based on Kraft- and ionic-liquid-isolated lignins

2016 ◽  
Vol 18 (20) ◽  
pp. 5607-5620 ◽  
Author(s):  
Xiaoping Shen ◽  
Paula Berton ◽  
Julia L. Shamshina ◽  
Robin D. Rogers

Lignin-based hydrogels in both bulk and membrane forms for potential drug delivery, food packaging, and wound dressing applications have been designed by crosslinking ionic-liquid-isolated lignin with epoxide-terminated polyethylene glycol (ETPEG) in alkaline solution.

Biology ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 993
Author(s):  
Richa Chaturvedi ◽  
Yumin Kang ◽  
Yunji Eom ◽  
Sri Ramulu Torati ◽  
CheolGi Kim

The early removal of drug delivery agents before reaching the affected target remains an area of interest to researchers. Several magnetotactic bacteria (MTB) have been used as self-propelled drug delivery agents, and they can also be controlled by an external magnetic field. By attaching the PEG–biotin polymer, the bacteria are turned into a stealth material that can escape from the phagocytosis process and reach the area of interest with the drug load. In the study, we developed a potential drug carrier by attaching the PEG–biotin to the MTB-through-NHS crosslinker to form a MTB/PEG–biotin complex. The attachment stability, efficacy, and bacterial viability upon attachment of the PEG–biotin polymer were investigated. Biological applications were carried out using a cytotoxicity assay of THP-1 cells, and the results indicate that the MTB/PEG–biotin complex is less harmful to cell viability compared to MTB alone. Along with cytotoxicity, an assay for cell association was also evaluated to assess the complex as a potential stealth material. The development of these complexes focuses on an easy, time-saving, and stable technique of polymer attachment with the bacteria, without damaging the cell’s surface, so as to make it a strong and reliable delivery agent.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3067
Author(s):  
Mustafa A. Jihad ◽  
Farah T. M. Noori ◽  
Majid S. Jabir ◽  
Salim Albukhaty ◽  
Faizah A. AlMalki ◽  
...  

Flaky graphene oxide (GO) nanoparticles (NPs) were synthesized using Hummer’s method and then capped with polyethylene glycol (PEG) by an esterification reaction, then loaded with Nigella sativa (N. sativa) seed extract. Aiming to investigate their potential use as a smart drug delivery system against Staphylococcus aureus and Escherichia coli, the spectral and structural characteristics of GO-PEG NPs were comprehensively analyzed by XRD, AFM, TEM, FTIR, and UV- Vis. XRD patterns revealed that GO-PEG had different crystalline structures and defects, as well as a higher interlayer spacing. AFM results showed GONPs with the main grain size of 24.41 nm, while GONPs–PEG revealed graphene oxide aggregation with the main grain size of 287.04 nm after loading N. sativa seed extract, which was verified by TEM examination. A strong OH bond appeared in FTIR spectra. Furthermore, UV- Vis absorbance peaks at (275, 284, 324, and 327) nm seemed to be correlated with GONPs, GO–PEG, N. sativa seed extract, and GO –PEG- N. sativa extract. The drug delivery system was observed to destroy the bacteria by permeating the bacterial nucleic acid and cytoplasmic membrane, resulting in the loss of cell wall integrity, nucleic acid damage, and increased cell-wall permeability.


2021 ◽  
Vol 332 ◽  
pp. 301-311
Author(s):  
Đorđe Cvjetinović ◽  
Željko Prijović ◽  
Drina Janković ◽  
Magdalena Radović ◽  
Marija Mirković ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1347
Author(s):  
Arbanah Muhammad ◽  
Dabin Lee ◽  
Yonghun Shin ◽  
Juhyun Park

Porous polysaccharides have recently attracted attention due to their porosity, abundance, and excellent properties such as sustainability and biocompatibility, thereby resulting in their numerous applications. Recent years have seen a rise in the number of studies on the utilization of polysaccharides such as cellulose, chitosan, chitin, and starch as aerogels due to their unique performance for the fabrication of porous structures. The present review explores recent progress in porous polysaccharides, particularly cellulose and chitosan, including their synthesis, application, and future outlook. Since the synthetic process is an important aspect of aerogel formation, particularly during the drying step, the process is reviewed in some detail, and a comparison is drawn between the supercritical CO2 and freeze drying processes in order to understand the aerogel formation of porous polysaccharides. Finally, the current applications of polysaccharide aerogels in drug delivery, wastewater, wound dressing, and air filtration are explored, and the limitations and outlook of the porous aerogels are discussed with respect to their future commercialization.


Author(s):  
Jessica Borges-Vilches ◽  
Javiera Poblete ◽  
Fernando Gajardo ◽  
Claudio Aguayo ◽  
Katherina Fernández

2021 ◽  
Author(s):  
Amlika Rungrod ◽  
Apichaya Kapanya ◽  
Winita Punyodom ◽  
Robert Molloy ◽  
Jomkhwan Meerak ◽  
...  

2017 ◽  
Vol 41 (21) ◽  
pp. 12801-12807 ◽  
Author(s):  
Rafał Bielas ◽  
Dariusz Łukowiec ◽  
Dorota Neugebauer

Poly[trimethylammonium (meth)acrylate]s decorated by salicylate anions were investigated as drug carriers. Efficient exchange of drug was provided by phosphate anions contained in the medium within 4 h.


Sign in / Sign up

Export Citation Format

Share Document