Synthesis, characterization, optical and electrochemical properties and antifungal and anticancer activities of ferrocenyl conjugated novel dendrimers

2017 ◽  
Vol 41 (4) ◽  
pp. 1714-1722 ◽  
Author(s):  
Velautham Saravanan ◽  
Ayyavoo Kannan ◽  
Perumal Rajakumar

A new class of triazoloferrocenyl conjugates was prepared by copper(i) catalyzed click chemistry, which shows good antifungal activity against fungal pathogens, and also shows excellent anticancer activity against MCF-7 cells.

2018 ◽  
Vol 42 (5) ◽  
pp. 3282-3292 ◽  
Author(s):  
Kannan Rajavelu ◽  
Mamangam Subaraja ◽  
Perumal Rajakumar

Benzoheterazole dendrimers with triazole bridges and bisphenol A/benzophenone core units have been successfully synthesized by click chemistry. Higher generation dendrimers exhibit better antioxidant and anticancer activities than the lower generation dendrimers.


2018 ◽  
Vol 68 (3) ◽  
pp. 251-273 ◽  
Author(s):  
Ahmed M. Gouda ◽  
Ahmed H. Abdelazeem ◽  
Ashraf N. Abdalla ◽  
Muhammad Ahmed

Abstract Towards optimization of the pyrrolizine-5-carboxamide scaffold, a novel series of six derivatives (4a-c and 5a-c) was prepared and evaluated for their anti-inflammatory, analgesic and anticancer activities. The (EZ)-7-cyano-6-((4-hydroxybenzylidene)amino)-N-(p-tolyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (4b) and (EZ)-6-((4-chlorobenzylidene)-amino)-7-cyano-N-(p-tolyl)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (5b) bearing the electron donating methyl group showed the highest anti-inflammatory activity while (EZ)-6-((4-chlorobenzylidene)amino)-7-cyano-N-phenyl-2,3-dihydro-1H-pyrrolizine-5-carboxamide (5a) was the most active analgesic agent. Cytotoxicity of the new compounds was evaluated against the MCF-7, A2780 and HT29 cancer cell lines using the MTT assay. Compounds 4b and 5b displayed high anticancer activity with IC50 in the range of 0.30–0.92 μmol L−1 against the three cell lines, while compound (EZ)-N-(4-chlorophenyl)-7-cyano-6-((4-hydroxybenzylidene)-amino)-2,3-dihydro-1H-pyrrolizine-5-carboxamide (4c) was the most active against MCF-7 cells (IC50 = 0.08 μmol L−1). Both the anti-inflammatory and anticancer activities of the new compounds were dependent on the type of substituent on the phenyl rings. Substituents with opposite electronic effects on the two phenyl rings are preferable for high cytotoxicity against the MCF-7 and A2780 cells. COX inhibition was suggested as the molecular mechanism of the anti-inflammatory activity of the new compounds while no clear relationship could be observed between COX inhibition and anticancer activity. Compound 5b, the most active against the three cell lines, induced dose-dependent early apoptosis with 0.1–0.2 % necrosis in MCF-7 cells. New compounds showed promising drug-likeness scores while the docking study revealed high binding affinity to COX-2. Taken together, this study highlighted the significant impact of the substituents on the anti-inflammatory and anticancer activity of pyrrolizine-5-carboxamides, which could help in further optimization to discover good leads for the treatment of cancer and inflammation.


2019 ◽  
Vol 16 (8) ◽  
pp. 619-626
Author(s):  
Arunkumar Thiriveedhi ◽  
Ratnakaram Venkata Nadh ◽  
Navuluri Srinivasu ◽  
Narayana Murthy Ganta

Nowadays, hybrid drugs have gained a significant role in the treatment of different health problems. Most of the hybrid molecules with different heterocyclic moieties were proved to be potent anti-tumor agents in cancer chemotherapy. Hence, the present study is aimed at the evaluation of in vitro anticancer activity of novel hybrid molecules (pyrazolyl benzoxazole conjugates) and to investigate their anticancer activity by molecular docking studies. Designed, synthesized and characterized the novel pyrazolyl benzoxazole conjugates. Anticancer activity of these compounds was determined by SRB assay. Then molecular docking studies were carried out against proto-oncogene tyrosine-protein kinase (ATP-Src, PDB: 2BDF), a putative target for cancer. All the synthesized compound derivatives were evaluated against MCF-7, KB, Hop62 and A549 cancer cell lines. Compounds 9b and 9c exhibited excellent anticancer activities with GI50 values of <0.1 µM against MCF-7 and A549 cell lines. Compound 9e exhibited good antitumor activity on MCF-7 and A-549 with GI50 values of 0.12 µM and 0.19 µM respectively. Compound 9g showed better anticancer activity on A-549 cancer cell line with GI50 of 0.34 µM. The two-hybrid molecules 9b and 9c are found to be comparably potent with the standard drug doxorubicin and may act as drug lead compounds in medicinal chemistry aspect. The present docking investigation proved that having benzoxazole of compound 9c at the position of benzofuran of reference compound (N-acetyl pyrazoline derivative) might be valid for contributing to anti-cancer activity.


Author(s):  
Muhammad İ. Han ◽  
Şükriye G. Küçükgüzel

Background: Spreading rapidly in recent years, cancer has become the cause of one of the highest mortality rates after cardiovascular diseases. With more attention being directed to cancer, anticancer research has become an important research field. In spite of enormous research activities in this area, the reason for cancer development is still not clearly understood. Scientists are now working on the biology of cancer, especially on the root of the cause for cancer development. The aim is to treat the cancer disease, and thus cure the patients. Continuing efforts on the development of novel molecules as potential anticancer agents is essential for this purpose. Objective: The main aim of this review was to present a survey on the medicinal chemistry of thioethers and to provide practical data on their cytotoxicities against various cancer cell lines. Methods: Research articles published between 2001-2019 were consulted in the preparation of this review article though patent literature was not included here. Results: Compounds containing thioether functionality were proven to have anticancer activities. Indeed, thioether functionality was found to be a must in some cases to show anticancer activity. Conclusion: Thioether containing molecules may emerge as new class of potent and effective anticancer agents in the near future.


Synlett ◽  
2018 ◽  
Vol 29 (15) ◽  
pp. 1995-2000
Author(s):  
Perumal Rajakumar ◽  
Devaraj Anandkumar

A new class of porphyrin-cored fluorenodendrimers were synthesized by a convergent approach through click chemistry. The zeroth-, first-, and second-generation porphyrin-cored fluorenodendrimers were characterized by means of 1H and 13C NMR spectroscopy, UV-vis spectroscopy, fluorescent spectroscopy, elemental analysis, and MALDI-TOF mass spectrometry. The UV-vis spectrum of the dendrimers showed an increase in the absorption intensity on increasing the dendrimer generation, and a bathochromic shift was observed for higher-generation dendrimers compared with lower-generation dendrimers. The dendrimers showed emission bands at 317, 604–668, and 617–668 nm, the intensity of which increased with increasing dendrimer generation. All the synthesized dendrimers exhibited a reversible oxidation potential in cyclic voltammetry. The therapeutic efficacy of the porphyrin-cored fluorenodendrimers for the inhibition of a growth tumor cell (PA-1) increased with increasing generation number of the dendrimer.


2022 ◽  
Author(s):  
Wen-Yan Wang ◽  
Zihui Yang ◽  
A-Liang Li ◽  
Qing-Song Liu ◽  
Yue Sun ◽  
...  

A series of novel 2-amino-4-aryl-pyrimidine derivatives of ursolic acid were designed, synthesized, and evaluated for their anticancer activities against four cancer cell lines (MCF-7, HeLa, HepG2, and A549) and a...


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5447
Author(s):  
Ahmed Gaber ◽  
Walaa F. Alsanie ◽  
Deo Nandan Kumar ◽  
Moamen S. Refat ◽  
Essa M. Saied

Cancer is one of the leading causes of death worldwide. Although several potential therapeutic agents have been developed to efficiently treat cancer, some side effects can occur simultaneously. Papaverine, a non-narcotic opium alkaloid, is a potential anticancer drug that showed selective antitumor activity in various tumor cells. Recent studies have demonstrated that metal complexes improve the biological activity of the parent bioactive ligands. Based on those facts, herein we describe the synthesis of novel papaverine–vanadium(III), ruthenium(III) and gold(III) metal complexes aiming at enhancing the biological activity of papaverine drug. The structures of the synthesized complexes were characterized by various spectroscopic methods (IR, UV–Vis, NMR, TGA, XRD, SEM). The anticancer activity of synthesized metal complexes was evaluated in vitro against two types of cancer cell lines: human breast cancer MCF-7 cells and hepatocellular carcinoma HepG-2 cells. The results revealed that papaverine-Au(III) complex, among the synthesized complexes, possess potential antimicrobial and anticancer activities. Interestingly, the anticancer activity of papaverine–Au(III) complex against the examined cancer cell lines was higher than that of the papaverine alone, which indicates that Au-metal complexation improved the anticancer activity of the parent drug. Additionally, the Au complex showed anticancer activity against the breast cancer MCF-7 cells better than that of cisplatin. The biocompatibility experiments showed that Au complex is less toxic than the papaverine drug alone with IC50 ≈ 111 µg/mL. These results indicate that papaverine–Au(III) complex is a promising anticancer complex-drug which would make it a suitable candidate for further in vivo investigations.


RSC Advances ◽  
2019 ◽  
Vol 9 (63) ◽  
pp. 36994-37002
Author(s):  
Jothinathan Sathiya Savithri ◽  
Perumal Rajakumar

(S)-BINOL cored dendrimers 1–3 with rhodamine B surface group and triazole bridging unit were synthesized up to second generation in good yield by convergent synthesis through click chemistry.


2020 ◽  
Vol 17 (12) ◽  
pp. 969-978
Author(s):  
Balakishan Vadla ◽  
Sailu Betala

A series of novel triazole functionalized pyrido [3',2':4,5] furo[3,2-d] pyrimidin-4 (3H)-one derivatives 7a-p were prepared from ethyl furo[2,3-b]pyridine-2-carboxylate 3 on reaction with ammonia to afford furo[2,3-b]pyridine-2-carboxamide 4. This compound, on reaction with triethyl orthoformate TEOF, gave compound 5. Compound 5 on propargylation, followed by a reaction with substituted aryl azides under Sharpless reaction conditions, furnished triazole tagged pyrido [3',2':4,5]furo[3,2-d] pyrimidin-4(3H)-one derivatives. All the products 7a-p were screened against four human cancer cell lines, such as HeLa - Cervical cancer (CCL-2), COLO 205- Colon cancer (CCL-222), HepG2- Liver cancer (HB-8065), and MCF7 - Breast cancer (HTB-22) and one normal cell line (HEK 293). Compounds 7b, 7n, 7o and 7p, which showed promising anticancer activity, were identified and found to be non-toxic to normal cell line. Studies for HeLa, COLO205, HepG2, and MCF-7 using CoMFA and CoMSIA were carried out . Models from 3D-QSAR provided a strong basis for future rational design of more active and selective HeLa, COLO205, HepG2, and MCF-7 cell line inhibitors.


Sign in / Sign up

Export Citation Format

Share Document