Multicomponent access to indolo[3,3a-c]isoquinolin-3,6-diones: formal synthesis of (±)-plicamine

2016 ◽  
Vol 14 (15) ◽  
pp. 3677-3680 ◽  
Author(s):  
Marco V. Mijangos ◽  
Luis D. Miranda

The complete tetracyclic core structure of plicamine, a novel Amaryllidaceae-type alkaloid, was expeditously prepared by an Ugi four-component condensation reaction, followed by a one-pot sequential phenolic oxidation and intramolecular coupling process.

2018 ◽  
Vol 21 (4) ◽  
pp. 298-301 ◽  
Author(s):  
Ghasem Marandi

Aim and Objective: The reaction of cyclohexylisocyanide and 2-aminopyridine-3- carboxylic acid in the presence of benzaldehyde derivatives in ethanol led to 3-(cyclohexylamino)-2- arylimidazo[1,2-a]pyridine-8-carboxylic acids in high yields. In a three component condensation reaction, isocyanide reacts with 2-aminopyridine-3-carboxylic acid and aromatic aldehydes without any prior activation. Material and Methods: The synthesized products have stable structures which have been characterized by IR, 1H, 13C and Mass spectroscopy as well as CHN-O analysis. Results: In continuation of our attempts to develop simple one-pot routes for the synthesis of 3- (cyclohexylamino)-2-arylimidazo[1,2-a]pyridine-8-carboxylic acids, aromatic aldehydes with divers substituted show a high performance. Conclusion: In conclusion, this study introduces the art of combinatorial chemistry using a simple one-pot procedure for the synthesis of new materials which are interesting compounds in medicinal and biological sciences.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 117
Author(s):  
Yousef Hijji ◽  
Rajeesha Rajan ◽  
Hamdi Ben Yahia ◽  
Said Mansour ◽  
Abdelkader Zarrouk ◽  
...  

The(3R,4R,6R)-3-(((E)-2-hydroxybenzylidene)amino)-6-(hydroxymethyl)tetrahydro-2H-pyran-2,4,5-triol water-soluble Glucose amine Schiff base (GASB-1) product was made available by condensation of 2-hydroxybenzaldehyde with (3R,6R)-3-amino-6-(hydroxymethyl)-tetra-hydro-2H-pyran-2,4,5-triol under mono-mode microwave heating. A one-pot 5-minute microwave-assisted reaction was required to complete the condensation reaction with 90% yield and without having byproducts. The 3D structure of GASB-1 was solved from single crystal X-ray diffraction data and computed by DFT/6-311G(d,p). The Hirshfeld surface analysis (HSA), molecular electronic potential (MEP), Mulliken atomic charge (MAC), and natural population analysis (NPA) were performed. The IR and UV-Vis spectra were matched to their density functional theory (DFT) relatives and the thermal behavior was resolved in an open-room condition via thermogravimetry/Derivative thermogravimetry (TG/DTG) and differential scanning calorimetry (DSC). The highest occupied molecular orbital/lowest unoccupied molecular orbital (HOMO/LUMO), density of state (DOS), and time-dependence TD-DFT computations were correlated to the experimental electron transfer in water and acrylonitrile solvents.


Chemistry ◽  
2021 ◽  
Vol 3 (3) ◽  
pp. 783-799
Author(s):  
Maryam Ariannezhad ◽  
Davood Habibi ◽  
Somayyeh Heydari ◽  
Vahideh Khorramabadi

A new magnetic supported manganese-based coordination complex (Fe3O4@SiO2@CPTMS@MBOL@ Mn) was prepared in consecutive stages and characterized via various techniques (VSM, SEM, TEM, XRD, FT-IR, EDX, TG-DTA, and ICP). To evaluate its application, it was used for synthesis of divers Indazolophthalazinetriones in a simple procedure via the one-pot three-component condensation reaction of aldehydes, dimedone, and phthalhydrazide in ethanol under reflux conditions. The Mn catalyst can be recycled without any noticeable loss in catalytic activity. Additionally, the antibacterial properties of the nano-catalyst were studied against some bacterial strains.


2021 ◽  
Vol 143 (7) ◽  
pp. 2716-2721
Author(s):  
Jun Zhu ◽  
Yi Han ◽  
Yong Ni ◽  
Guangwu Li ◽  
Jishan Wu

Author(s):  
Rubina Siddiqui ◽  
Urooj Iqbal ◽  
Zafar Saeed Saify ◽  
Shammim Akhter ◽  
Sammer Yousuf

The title compound, C31H46NO7 +·Cl−, was synthesized by a one-pot Mannich condensation reaction. In the molecule, the piperidinone ring adopts a chair conformation, and the trimethoxy-substituted benzene rings and octyl chain are arranged equatorially. In the crystal, centrosymmetric dimers are linked into layers parallel to (011) by N—H...Cl and C—H...Cl hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are O...H (20.5%) interactions followed by C...H (7.8%), Cl...H (5.5%), C...C (1.2%), C...O (0.5%) and Cl...O (0.4%) interactions.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Bo Li ◽  
Lan Wang ◽  
Xiangxiang Chen ◽  
Xin Chu ◽  
Hong Tang ◽  
...  

AbstractPeptide modification methods that do not rely on the cysteine residue are underdeveloped, and their development could greatly expand the current toolbox for peptide chemistry. During the course of preliminary investigations into the classical ortho-phthalaldehyde (OPA)-amine-thiol condensation reaction, we found that in the absence of thiol, OPA readily condenses with two primary alkyl amines to form a class of underexplored isoindolin-1-imine compounds under mild aqueous conditions. From the intramolecular version of this OPA-2amines reaction, an efficient and selective methodology using mild reaction conditions has been developed for stapling unprotected peptides via crosslinking of two amino groups in both an end-to-side and side-to-side fashion. The stapling method is superfast and broadly applicable for various peptide substrates with the reacting amino groups separated by a wide range of different amino acid units. The macrocyclization reactions of selected substrates are completed within 10 seconds at 5 mM concentration and within 2 minutes at 50 μM concentration. Importantly, the resulting cyclized peptides with an isoindolinimine linkage can be extended in a one-pot sequential addition manner with several different electron-deficient π electrophiles, thereby generating more complex structures.


2021 ◽  
Author(s):  
Paul M. D’Agostino ◽  
Catharina Julia Seel ◽  
Tanja Gulder ◽  
Tobias Gulder

The gamma-butyrolactone structural motif is commonly found in many natural signaling molecules and other specialized metabolites. A prominent example is the potent aquatic phytotoxin cyanobacterin bearing a highly functionalized gamma-butyrolactone core structure. The enzymatic machinery assembling cyanobacterin and the many structurally related natural products – herein termed furanolides – has remained elusive over decades. Here we discover and characterize the underlying biosynthetic process of furanolide core structure assembly. The cyanobacterin biosynthetic gene cluster (<i>cyb</i>) is identified by targeted bioinformatic screening and validated by heterologous expression in <i>E. coli</i>. Functional evaluation of the recombinant key enzymes provides in-depth mechanistic insights into a streamlined <i>C</i>,<i>C</i>-bond-forming cascade that involves installation of compatible reactivity at seemingly unreactive C-alpha-positions of the amino acid precursors and facilitates development of a one-pot biocatalytic <i>in vitro</i> synthesis. Our work extends the biosynthetic and biocatalytic toolbox for gamma-butyrolactone formation. It thereby provides a general paradigm for the biosynthesis of furanolides and thus sets the stage for their targeted discovery, biosynthetic engineering and enzymatic synthesis.


Sign in / Sign up

Export Citation Format

Share Document