Single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for block copolymer nanostructures via blue-light-switchable FRAP

2016 ◽  
Vol 15 (11) ◽  
pp. 1433-1441 ◽  
Author(s):  
Wen-Liang Gong ◽  
Jie Yan ◽  
Ling-Xi Zhao ◽  
Chong Li ◽  
Zhen-Li Huang ◽  
...  

A blue-light-switchable fluorophore enables single-wavelength controlledin situdynamic super-resolution imaging of block copolymers.

Nanophotonics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 2111-2128 ◽  
Author(s):  
Jialei Tang ◽  
Jinhan Ren ◽  
Kyu Young Han

AbstractFluorescence microscopy has long been a valuable tool for biological and medical imaging. Control of optical parameters such as the amplitude, phase, polarization, and propagation angle of light gives fluorescence imaging great capabilities ranging from super-resolution imaging to long-term real-time observation of living organisms. In this review, we discuss current fluorescence imaging techniques in terms of the use of tailored or structured light for the sample illumination and fluorescence detection, providing a clear overview of their working principles and capabilities.


Polymers ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 781 ◽  
Author(s):  
Sedakat Altinpinar ◽  
Wael Ali ◽  
Patrick Schuchardt ◽  
Pinar Yildiz ◽  
Hui Zhao ◽  
...  

On the basis of the major application for block copolymers to use them as separation membranes, lithographic mask, and as templates, the preparation of highly oriented nanoporous thin films requires the selective removal of the minor phase from the pores. In the scope of this study, thin film of polystyrene-block-poly(ethylene oxide) block copolymer with a photocleavable junction groups based on ortho-nitrobenzylester (ONB) (PS-hν-PEO) was papered via the spin coating technique followed by solvent annealing to obtain highly-ordered cylindrical domains. The polymer blocks are cleaved by means of a mild UV exposure and then the pore material is washed out of the polymer film by ultra-pure water resulting in arrays of nanoporous thin films to remove one block. The removal of the PEO materials from the pores was proven using the grazing-incidence small-angle X-ray scattering (GISAXS) technique. The treatment of the polymer film during the washing process was observed in real time after two different UV exposure time (1 and 4 h) in order to draw conclusions regarding the dynamics of the removal process. In-situ X-ray reflectivity measurements provide statistically significant information about the change in the layer thickness as well as the roughness and electron density of the polymer film during pore formation. 4 H UV exposure was found to be more efficient for PEO cleavage. By in-situ SFM measurements, the structure of the ultra-thin block copolymer films was also analysed and, thus, the kinetics of the washing process was elaborated. The results from both measurements confirmed that the washing procedure induces irreversible change in morphology to the surface of the thin film.


2011 ◽  
Vol 133 (33) ◽  
pp. 12902-12905 ◽  
Author(s):  
Gabriele S. Kaminski Schierle ◽  
Sebastian van de Linde ◽  
Miklos Erdelyi ◽  
Elin K. Esbjörner ◽  
Teresa Klein ◽  
...  

2015 ◽  
Vol 21 (51) ◽  
pp. 18539-18542 ◽  
Author(s):  
Charlotte E. Boott ◽  
Romain F. Laine ◽  
Pierre Mahou ◽  
John R. Finnegan ◽  
Erin M. Leitao ◽  
...  

Author(s):  
Brian J. Beliveau ◽  
Alistair N. Boettiger ◽  
Guy Nir ◽  
Bogdan Bintu ◽  
Peng Yin ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Yanxiang Ni ◽  
Bo Cao ◽  
Tszshan Ma ◽  
Gang Niu ◽  
Yingdong Huo ◽  
...  

High-resolution visualization of short non-repetitive DNA in situ in the nuclear genome is essential for studying looping interactions and chromatin organization in single cells. Recent advances in fluorescence in situ hybridization (FISH) using Oligopaint probes have enabled super-resolution imaging of genomic domains with a resolution limit of 4.9 kb. To target shorter elements, we developed a simple FISH method that uses molecular beacon (MB) probes to facilitate the probe-target binding, while minimizing non-specific fluorescence. We used three-dimensional stochastic optical reconstruction microscopy (3D-STORM) with optimized imaging conditions to efficiently distinguish sparsely distributed Alexa-647 from background cellular autofluorescence. Utilizing 3D-STORM and only 29–34 individual MB probes, we observed 3D fine-scale nanostructures of 2.5 kb integrated or endogenous unique DNA in situ in human or mouse genome, respectively. We demonstrated our MB-based FISH method was capable of visualizing the so far shortest non-repetitive genomic sequence in 3D at super-resolution.


2019 ◽  
Vol 18 ◽  
pp. 226-233 ◽  
Author(s):  
Yangdong Wen ◽  
Haibo Yu ◽  
Wenxiu Zhao ◽  
Feifei Wang ◽  
Xiaoduo Wang ◽  
...  

Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 4708-4708
Author(s):  
Xiqin Tong ◽  
Weibing Kuang ◽  
Yuxing Liang ◽  
Fuling Zhou ◽  
Zhen li Huang

Abstract Multiple myeloma (MM) is a bone marrow-based malignancy that has a range of consequences resulting from either its direct effects on the bone marrow microenvironment- causing anaemia, more extensive myelosuppression and bone lysis - or its indirect effects on the kidney and other organ systems. Over the past several years, the introduction of autologous stem cell transplantation, immunomodulatory drugs, proteasome inhibitors, histone deacetylase inhibitors, and monoclonal antibodies has substantially improved survival outcomes. However, MM remains biologically heterogeneous with significant variability among patients in terms of clinical features, response to therapy and overall survival (OS). Several prognostic variables can help predict this variability in outcomes ranging from clinical based systems such as the International Staging System (ISS) to more advanced molecular characterizations of the myeloma PCs by cytogenetics and gene expression profiling. However with the advancement in technology utilized for laboratory testing and the emergence of new treatments for MM, there has been an evolution in the significance of these previously defined prognostic markers with time. Assessment of disease activity and depth of response continues to be a moving target in MM. Super-resolution fluorescence imaging is a major breakthrough in the field of optical imaging in this century. Super-resolution fluorescence imaging has been applied to a variety of biological imaging applications, including membrane, cytoskeletal and cytosolic proteins in fixed and living cells. Molecular motions can be quantified. To establish the detection limit and sensitivity threshold of dSTORM and FC, we used serial dilutions of anti-CD38 antibody to detect expression of CD38 on 8226 cells by Super Resolution localization Microscopy and flow cytometry (FC). Design six different antibody concentrations (300ng/ml, 30ng/ml, 10ng/ml, 3ng/ml, 1ng/ml, 0.3ng/ml) to label MM cells with immunofluorescence, and then detect them by flow cytometry. Similarly, design eight different antibody concentrations (1μg/ml, 300ng/ml, 30ng/ml, 10ng/ml, 3ng/ml, 1ng/ml, 0.3ng/ml, 0.1ng/ml), and perform the same treatment, perform immunofluorescence labeling on MM cells, and then perform super-resolution imaging, and calculate the density of CD38 protein on the surface of MM cells of each concentration. Figure 1A detects the ratio of the number of cells to the total number of cells, it can be seen from Figure 1A that when the antibody concentration is not less than 30ng/ml, almost all MM thinners can detect the signal, but when the antibody concentration is less than at 30ng/ml, only a few or no cells can detect the signal. This shows that when the antibody concentration is lower than 30ng/ml, the sensitivity of flow cytometry is no longer sufficient to detect CD38 protein on the surface of MM cells. From Figure 1B, it can be seen that even when the CD38 antibody concentration is 0.3ng/ml, super-resolution imaging can still accurately identify each CD38 antigen molecule on the surface of MM cells, and the statistical CD38 protein density is 8.5864±1.4180/μm2. This shows that the sensitivity of super-resolution is much higher than that of streaming. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document