scholarly journals Facile preparation of polyimide/graphene nanocomposites via an in situ polymerization approach

RSC Advances ◽  
2017 ◽  
Vol 7 (5) ◽  
pp. 3003-3011 ◽  
Author(s):  
Songlv Qin ◽  
Cheng Chen ◽  
Mingjun Cui ◽  
Afang Zhang ◽  
Haichao Zhao ◽  
...  

In this study, to achieve a compatible and good dispersion of graphene in polyimide matrix, we synthesized an aromatic diamine, aniline trimer, as a polymerizable graphene dispersant.

2008 ◽  
Vol 47-50 ◽  
pp. 987-990
Author(s):  
Yi He Zhang ◽  
Qing Song Su ◽  
Li Yu ◽  
Li Bing Liao ◽  
Hong Zheng ◽  
...  

Phlogopite with layered silicate structure had been firstly chemically modified via an in situ intercalation method, and phlogopite-polymer nanocomposite films were prepared from 2,2'-bis (3,4-dicarboxyphenyl) hexafluropropane dianhydride (6FDA) and oxydimethyl aniline (ODA) in N,N-dimethylacetamide as a solvent by using in-situ polymerization process combined with ultrasonic dispersion and multi-step curing. The structure of phlogopite minerals and its polymer nanocomposites were characterized by X-ray diffraction (XRD) and infrared spectra (FTIR) respectively. The experimental results indicated that the phlogopites with layered nanostructure had lost their ordered structure and had been exfoliated or intercalated. Thereafter, they were dispersed randomly in the polyimide matrix. The dependence of dielectric properties and thermal stabilities of the nanocomposite films on the phlogopite content and frequency were studied.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1377
Author(s):  
Laura Sisti ◽  
Grazia Totaro ◽  
Annamaria Celli ◽  
Loris Giorgini ◽  
Simone Ligi ◽  
...  

In situ intercalative polymerization has been investigated as a strategic way to obtain poly(propylene 2,5-furandicarboxylate) (PPF) and poly(hexamethylene 2,5-furandicarboxylate) (PHF) nanocomposites with different graphene types and amounts. Graphene (G) has been dispersed in surfactant stabilized water suspensions. The loading range in composites was 0.25–0.75 wt %. For the highest composition, a different type of graphene (XT500) dispersed in 1,3 propanediol, containing a 6% of oxidized graphene and without surfactant has been also tested. The results showed that the amorphous PPF is able to crystallize during heating scan in DSC and graphene seems to affect such capability: G hinders the polymer chains in reaching an ordered state, showing even more depressed cold crystallization and melting. On the contrary, such hindering effect is absent with XT500, which rather induces the opposite. Concerning the thermal stability, no improvement has been induced by graphene, even if the onset degradation temperatures remain high for all the materials. A moderate enhancement in mechanical properties is observed in PPF composite with XT500, and especially in PHF composite, where a significative increase of 10–20% in storage modulus E’ is maintained in almost all the temperature range. Such an increase is also reflected in a slightly higher heat distortion temperature. These preliminary results can be useful in order to further address the field of application of furan-based polyesters; in particular, they could be promising as packaging materials.


Sign in / Sign up

Export Citation Format

Share Document