Chiral nematic mesoporous magnetic ferrites

2016 ◽  
Vol 4 (48) ◽  
pp. 11382-11386 ◽  
Author(s):  
Georg R. Meseck ◽  
Andrea S. Terpstra ◽  
Armando J. Marenco ◽  
Simon Trudel ◽  
Wadood Y. Hamad ◽  
...  

Hard templating of metal ferrites in the pores of a mesoporous silica yields nanomaterials with twisting magnetic structures. Using a variety of techniques, we demonstrate mesoporosity of the materials, the influence of calcination temperature on crystallinity and magnetic properties, and weak magnetic anisotropy.

2015 ◽  
Vol 44 (33) ◽  
pp. 14724-14731 ◽  
Author(s):  
Pei-Xi Wang ◽  
Vitor M. Zamarion ◽  
Wadood Y. Hamad ◽  
Mark J. MacLachlan

Prussian blue analogues with a chiral nematic superstructure have been prepared by hard templating inside chiral nematic mesoporous silica.


Author(s):  
Yoji Horii ◽  
Hal Suzuki ◽  
Yuji Miyazaki ◽  
Motohiro Nakano ◽  
Shota Hasegawa ◽  
...  

Heat capacity analyses revealed dynamics and magnetic anisotropy of NO molecules confined in molecular cages.


2009 ◽  
Vol 121 (1-3) ◽  
pp. 178-184 ◽  
Author(s):  
Sher Alam ◽  
Chokkalingam Anand ◽  
Radhakrishnan Logudurai ◽  
Veerappan V. Balasubramanian ◽  
Katsuhiko Ariga ◽  
...  

2017 ◽  
Vol 441 ◽  
pp. 585-589 ◽  
Author(s):  
R. Sbiaa ◽  
I.A. Al-Omari ◽  
M. Al Bahri ◽  
P.R. Kharel ◽  
M. Ranjbar ◽  
...  

2015 ◽  
Vol 815 ◽  
pp. 227-232 ◽  
Author(s):  
Ying Yu ◽  
Shu Hong Xie ◽  
Qing Feng Zhan

A practical way to manipulate the magnetic anisotropy of magnetostrictive FeGa thin films grown on flexible polyethylene terephthalate (PET) substrates is introduced in this study. The effect of film thickness on magnetic properties and magnetostriction constant of polycrystalline FeGa thin films was investigated. The anisotropy field Hk of flexible FeGa films, i.e., the saturation field determined by fitting the hysteresis curves measured along the hard axis, was enhanced with increasing the tensile strain applied along the easy axis of the thin films, but this enhancement via strain became unconspicuous with increasing the thickness of FeGa films. In order to study the magnetic sensitivity of thin films responding to the external stress, we applied different strains on these films and measure the corresponding anisotropy field. Moreover, the effective magnetostriction constant of FeGa films was calculated from the changes of both anisotropy field and external strain based on the Villari effect. A Neel’s phenomenological model was developed to illustrate that the effective anisotropy field of FeGa thin films was contributed from both the constant volume term and the inverse thickness dependent surface term. Therefore, the magnetic properties for the volume and surface of FeGa thin films were different, which has been verified in this work by using vibrating sample magnetometer (VSM) and magneto-optic Kerr effect (MOKE) system. The anisotropy field contributed by the surface of FeGa film and obtained by MOKE is smaller than that contributed by the film volume and measured by VSM. We ascribed the difference in Hk to the relaxation of the effective strain applied on the films with increasing the thickness of films.


2014 ◽  
Vol 616 ◽  
pp. 247-251
Author(s):  
Tim Yang ◽  
Z.Q. Wang ◽  
Makoto Kohda ◽  
Takeshi Seki ◽  
Koki Takanashi ◽  
...  

We investigate the perpendicular magnetic anisotropy dependence on the AlO capping layer in Pt/Co/AlO films. AlO was deposited on Pt/Co films by RF magnetron sputtering and atomic layer deposition (ALD) with varying thickness. It is found that the prolonged deposition of thick AlO layers by RF magnetron sputtering causes significant damage to the Pt/Co underneath while AlO layers formed by ALD can be of arbitrary thickness with no damage to the magnetic properties of the films. The decline of the magnetic properties can be attributed to the method of AlO deposition for each process. In the RF magnetron sputtering, AlO atoms with high kinetic energy are ejected from a sputter target resulting in the degradation of Pt/Co films, while the process of deposition of AlO by ALD is governed by a series of chemically reactive condensations allowing for arbitrary deposition thickness of AlO.


ChemInform ◽  
2006 ◽  
Vol 37 (38) ◽  
Author(s):  
Mohsen Ben Salah ◽  
Serge Vilminot ◽  
Gilles Andre ◽  
Mireille Richard-Plouet ◽  
Tahar Mhiri ◽  
...  

2001 ◽  
Vol 322 (1-2) ◽  
pp. 21-36 ◽  
Author(s):  
A. Gil ◽  
B. Penc ◽  
M. Hofmann ◽  
A. Szytula ◽  
A. Zygmunt

2021 ◽  
Vol 122 (6) ◽  
pp. 533-539
Author(s):  
V. A. Lukshina ◽  
N. V. Dmitrieva ◽  
E. G. Volkova ◽  
D. A. Shishkin

2018 ◽  
Vol 930 ◽  
pp. 449-453
Author(s):  
R.A.C. Felix ◽  
R.L.O. da Rosa ◽  
Luiz P. Brandão

Alternative methods of quantitative texture analysis are applied to characterize the non-oriented grain electrical steels (NOG) in relation to their magnetic properties. Magnetic anisotropy energy (Ea) and A parameter are two models based on crystallographic texture that generates global parameters that can be used to predict the magnetic properties of NOG steels. In this work, these two models were used to evaluate the magnetic polarization and compared between themselves to realize which one best correlates to this property.


Sign in / Sign up

Export Citation Format

Share Document