2,2′-Biphen[n]arenes (n = 4–8): one-step, high-yield synthesis, and host–guest properties

2017 ◽  
Vol 53 (89) ◽  
pp. 12096-12099 ◽  
Author(s):  
Lu Dai ◽  
Zhi-Jun Ding ◽  
Lei Cui ◽  
Jian Li ◽  
Xueshun Jia ◽  
...  

A new family of supramolecular macrocycles, 2,2′-biphen[n]arenes (n = 4–8), has been synthesized through a single-step reaction with a yield of 51%.

2020 ◽  
Author(s):  
Brian J Wang ◽  
Matthew Duncton

<div> <p>The azetidine group is frequently encountered within contemporary medicinal chemistry where it is viewed as a privileged structure. However, the introduction of an azetidine can be synthetically challenging. Herein, a straight-forward one step synthesis of azetidine-3-amines, starting from a bench stable, commercial material is presented. The reaction tolerates functional groups commonly encountered in biological-, medicinal- and agro-chemistry, and proceeds in moderate-to-high yield with secondary amines, and moderate-to-low yield with primary amines. The methodology compares favorably to recent alternative procedures and can be utilized in “any-stage” functionalization, including late-stage azetidinylation of approved drugs and other compounds with pharmacological activity.</p> </div>


2021 ◽  
Author(s):  
Nasrin Saberi Harouni ◽  
Hossein Naeimi

Abstract Multicomponent reactions are reactions in which three or more are agreeable of raw interests, composed in a one-step chemical process and the product is formed they give. Since multivariate reactions are monovalent reactions and Single-step conversions to ideal synthesis are very close. In this research, one pot three components reaction was carried out between 1, 3-dimethylbarbituric acid, malononitrile and different aldehydes in the attendance of Cu/Co/Ni/MWCNTs as a recyclable catalyst. This catalyst indicated high catalytic actuality with good proficiency and reusable under mild reservation. This reaction is performed fine at ambient temperature. This method proposed numerous materials such as being environmentally amicable for short reaction times and creating high yield products. The catalysts were collected and specified with diversity spectroscopic, such as techniques, such as FT-IR, X-ray fracture, and scanning electron microscopy. After finalization of the reaction, the vintage was obsolete, purified and identified by the melting points, infrared spectroscopy (FT-IR) and the magnetic resonance of the hydrogen nucleus (1H NMR) techniques.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Manohar Mahato ◽  
Santosh Yadav ◽  
Pradeep Kumar ◽  
Ashwani Kumar Sharma

Previously, we demonstrated that 6-(N,N,N′,N′-tetramethylguanidinium chloride)-hexanoyl-polyethylenimine (THP) polymers exhibited significantly enhanced transfection efficiency and cell viability. Here, in the present study, we have synthesized a series of N,N,N′,N′-tetramethylguanidinium-polyethylenimine (TP1-TP5) polymers via a single-step reaction involving peripheral primary amines of bPEI and varying amounts of 2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU). These polymers were found to interact efficiently with negatively charged pDNA and formed stable complexes in the size range of ~240–450 nm. Acid-base titration profiles revealed improved buffering capacity of TP polymers as compared to bPEI. Transfection and cytotoxicity assays performed with TP/pDNA complexes on HEK293, CHO, and HeLa cells showed significantly higher transfection efficiency and cell viability with one of the complexes, TP2/pDNA complex, exhibited the highest transfection efficiency (~1.4–2.3-fold) outcompeting native bPEI and the commercially available transfection reagent, Lipofectamine 2000. Compared to previously reported THP polymers, the transfection efficiency of TP/pDNA complexes was found to be lower, as examined by flow cytometry. These results highlight the importance of the hydrophobic C-6 linker in THP polymers in forming compact nanostructures with pDNA, which might lead to efficient uptake and internalization of the complexes; however, the projected TP polymers offer an advantage of their rapid and economical one-step synthesis.


RSC Advances ◽  
2015 ◽  
Vol 5 (106) ◽  
pp. 87528-87534 ◽  
Author(s):  
Prashant Dubey ◽  
Kumud Malika Tripathi ◽  
Ragini Mishra ◽  
Anshu Bhati ◽  
Anupriya Singh ◽  
...  

A high yield simple synthetic approach for water soluble photoluminescent carbon quantum dots via a single step, hydrothermal process, was described. Photoluminescent multi-colored emissions were used to label E. coli cells.


2020 ◽  
Author(s):  
Brian J Wang ◽  
Matthew Duncton

<div> <p>The azetidine group is frequently encountered within contemporary medicinal chemistry where it is viewed as a privileged structure. However, the introduction of an azetidine can be synthetically challenging. Herein, a straight-forward one step synthesis of azetidine-3-amines, starting from a bench stable, commercial material is presented. The reaction tolerates functional groups commonly encountered in biological-, medicinal- and agro-chemistry, and proceeds in moderate-to-high yield with secondary amines, and moderate-to-low yield with primary amines. The methodology compares favorably to recent alternative procedures and can be utilized in “any-stage” functionalization, including late-stage azetidinylation of approved drugs and other compounds with pharmacological activity.</p> </div>


1983 ◽  
Vol 49 (01) ◽  
pp. 024-027 ◽  
Author(s):  
David Vetterlein ◽  
Gary J Calton

SummaryThe preparation of a monoclonal antibody (MAB) against high molecular weight (HMW) urokinase light chain (20,000 Mr) is described. This MAB was immobilized and the resulting immunosorbent was used to isolate urokinase starting with an impure commercial preparation, fresh urine, spent tissue culture media, or E. coli broth without preliminary dialysis or concentration steps. Monospecific antibodies appear to provide a rapid single step method of purifying urokinase, in high yield, from a variety of biological fluids.


2020 ◽  
Vol 17 (11) ◽  
pp. 884-889
Author(s):  
Somayeh Mirdoraghi ◽  
Hamed Douroudgari ◽  
Farideh Piri ◽  
Morteza Vahedpour

For (Z)-(Z)-N-(λ5-phosphanylidene) formohydrazonic formic anhydride, Aza-Wittig reaction and Mumm rearrangement are studied using both density functional and coupled cluster theories. For this purpose, two different products starting from one substrate are considered that are competing with each other. The obtained products, P1 and P2, are thermodynamically favorable. The product of the aza-Wittig reaction, P1, is more stable than the product of Mumm rearrangement (P2). For the mentioned products, just one reliable pathway is separately proposed based on unimolecular reaction. Therefore, the rate constants based on RRKM theory in 300-600 K temperature range are calculated. Results show that the P1 generation pathway is a suitable path due to low energy barriers than the path P2. The first path has three steps with three transition states, TS1, TS2, and TS3. The P2 production path is a single-step reaction. In CCSD level, the computed barrier energies are 14.55, 2.196, and 10.67 kcal/mol for Aza-Wittig reaction and 42.41 kcal/mol for Mumm rearrangement in comparison with the corresponding complexes or reactants. For final products, the results of the computational study are in a good agreement with experimental predictions.


2020 ◽  
Vol 17 (8) ◽  
pp. 628-630
Author(s):  
Vu Binh Duong ◽  
Pham Van Hien ◽  
Tran Thai Ngoc ◽  
Phan Dinh Chau ◽  
Tran Khac Vu

A simple and practical method for the synthesis on a large scale of altretamine (1), a wellknown antitumor drug, has been successfully developed. The synthesis method involves the conversion of cyanuric chloride (2) into altretamine (1) by dimethylamination of 2 with an aqueous solution of 40% dimethylamine and potassium hydroxide in 1, -dioxan 4in one step to give altretamine (1) in high yield.


1991 ◽  
Vol 27 (21) ◽  
pp. 1989
Author(s):  
Chen Zhi ◽  
I.F. Blake
Keyword(s):  

Synthesis ◽  
2021 ◽  
Author(s):  
Sambasivarao Kotha ◽  
Sunil Pulletikurti ◽  
Ambareen Fatma ◽  
gopal dhangar ◽  
gonna somu Naidu

Here, we have demonstrated that the presence of a carbonyl group at C7 position is preventing the olefin metathesis of endo-norbornene derivatives due to the complexation of the metal alkylidene. Time-dependent NMR studies showed the presence of new proton signals in the metal alkylidene region, which indicate the formation of metal complex with the carbonyl group of the substrate. These observations were further proved by ESI-MS analysis. Whereas, computational studies provided that the catalyst was interacting with the C7 carbonyl group and aligned perpendicular to that of norbornene olefin. Later, these endo-keto norbornene derivatives were reduced to hydroxyl derivatives diastereoselectively. Ring-rearrangement metathesis (RRM) of these hydroxyl derivatives, produced the [6/5/6], and [5/6/5] carbo-tricyclic cores of the natural products in one step. Whereas the RRM of O-allyl derivatives, delivered the oxa-tricyclic compounds in a single step with excellent yields.


Sign in / Sign up

Export Citation Format

Share Document