A simple one-step hydrothermal route towards water solubilization of carbon quantum dots from soya-nuggets for imaging applications

RSC Advances ◽  
2015 ◽  
Vol 5 (106) ◽  
pp. 87528-87534 ◽  
Author(s):  
Prashant Dubey ◽  
Kumud Malika Tripathi ◽  
Ragini Mishra ◽  
Anshu Bhati ◽  
Anupriya Singh ◽  
...  

A high yield simple synthetic approach for water soluble photoluminescent carbon quantum dots via a single step, hydrothermal process, was described. Photoluminescent multi-colored emissions were used to label E. coli cells.

2021 ◽  
Vol 43 (3) ◽  
pp. 361-361
Author(s):  
Yaung Kwee Yaung Kwee ◽  
Alfinda Novi Kristanti and Mochamad Zakki Fahmi Alfinda Novi Kristanti and Mochamad Zakki Fahmi

Viral infection is a globally leading health issue, causing significantly unfavourable mortality with an adversely decreasing socio-economic growth. To solve those infections of global pandemic HIV specifically, the current utilization of highly active antiretroviral therapy (HAART) in human deficiency virus (HIV) theranostics has remarkably improved the life’s duration of patients infected by human immunodeficiency virus (HIV); however, the unfortunate drawbacks in combination with prolonged HAART therapy need to be used continuously along patient’s lifetime. Additionally, RNA virus of COVID-19 is also associated with viral pneumonia and acute respiratory distress syndrome causing significant morbidity and mortality. Meanwhile, many scientific researchers have explored the successive novelty of carbon quantum dots (CQDs) as alternative to HIV or other related viruses theranostics in the field of antiviral drugs research, but the attempt has been still challenging to introduce perfect antiviral CQDs with excellent biocompatibility, drug resistance, and safety at several areas in the virus’s life cycle. On the contrary, CQDs-based nano-therapy is currently promising because those carbon quantum dots had multiple favourable properties, including significant antiviral response effects, water-soluble activity, color-tunable fluorescence, high yield, low cytotoxic behaviour, and promising biocompatibility. In this review, some effectively recent progress of promising CQDs forviral inhibition and theranostics explored by many studies are systematically summarized.


Author(s):  
Xue Chen ◽  
Jiubin Zhu ◽  
Wenlu Song ◽  
Ling-Ping Xiao

A novel cascade biorefinery strategy toward phenolic monomers and carbon quantum dots (CQDs) is proposed here via coupling catalytic hydrogenolysis and hydrothermal treatment. Birch wood was first treated with catalytic hydrogenolysis to afford a high yield of monomeric phenols (44.6 wt%), in which 4-propanol guaiacol (10.2 wt%) and 4-propanol syringol (29.7 wt%) were identified as the two major phenolic products with 89% selectivity. An available carbohydrate pulp retaining 82.4% cellulose and 71.6% hemicellulose was also obtained simultaneously, which was further used for the synthesis of CQDs by a one-step hydrothermal process. The as-prepared CQDs exhibited excellent selectivity and detection limits for several heavy metal cations, especially for Fe3+ ions in an aqueous solution. Those cost-efficient CQDs showed great potential in fluorescent sensor in situ environmental analyses. These findings provide a promising path toward developing high-performance sensors on environmental monitoring and a new route for the high value-added utilization of lignocellulosic biomass.


2017 ◽  
Vol 41 (21) ◽  
pp. 13130-13139 ◽  
Author(s):  
S. Solomon Jones ◽  
Parikshit Sahatiya ◽  
Sushmee Badhulika

In this work, we demonstrate the high-yield synthesis of carbon quantum dots using a one-step eco-friendly, low-cost thermal treatment of a renewable biomass, i.e. natural chia seeds.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Chunjin Wei ◽  
Jinyu Li ◽  
Fang Gao ◽  
Shuxia Guo ◽  
Yongcui Zhou ◽  
...  

Novel water-soluble CdSe quantum dots (QDs) have been prepared withN-acetyl-L-cysteine as new stabilizer through a one-step hydrothermal route. The influence of experimental conditions, including reaction time, molar ratio of reactants, and pH value, on the luminescent properties of the obtained CdSe QDs has been systematically investigated. The characterization of as-prepared QDs was carried out through different methods. In particular, we realized qualitative and semiquantitative studies on CdSe QDs through X-ray photoelectron spectroscopy and electron diffraction spectroscopy. The results show that the as-prepared CdSe QDs exhibit a high quantum yield (up to 26.7%), high stability, and monodispersity and might be widely used in biochemical detection and biochemical research.


1983 ◽  
Vol 49 (01) ◽  
pp. 024-027 ◽  
Author(s):  
David Vetterlein ◽  
Gary J Calton

SummaryThe preparation of a monoclonal antibody (MAB) against high molecular weight (HMW) urokinase light chain (20,000 Mr) is described. This MAB was immobilized and the resulting immunosorbent was used to isolate urokinase starting with an impure commercial preparation, fresh urine, spent tissue culture media, or E. coli broth without preliminary dialysis or concentration steps. Monospecific antibodies appear to provide a rapid single step method of purifying urokinase, in high yield, from a variety of biological fluids.


2016 ◽  
Vol 4 (14) ◽  
pp. 2412-2420 ◽  
Author(s):  
Aneeya K. Samantara ◽  
Santanu Maji ◽  
Arnab Ghosh ◽  
Bamaprasad Bag ◽  
Rupesh Dash ◽  
...  

A facile one-step approach has been developed for the synthesis of carbon quantum dots (CQDs) from Good’s buffer.


Toxins ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 438 ◽  
Author(s):  
Manyu Shao ◽  
Ming Yao ◽  
Sarah De Saeger ◽  
Liping Yan ◽  
Suquan Song

An eco-friendly and efficient one-step approach for the synthesis of carbon quantum dots (CDs) that encapsulated molecularly imprinted fluorescence quenching particles (MIFQP) and their application for the determination of zearalenone (ZEA) in a cereal sample are described in this study. CDs with high luminescence were first synthesized, and then encapsulated in the silica-based matrix through a non-hydrolytic sol-gel process. The resulting ZEA-imprinted particles exhibited not only an excellent specific molecular recognition of ZEA, but also good photostability and obvious template binding-induced fluorescence quenching. Under the optimized conditions, the fluorescence intensity of MIFQP was inversely proportional to the concentration of ZEA. By validation, the detection range of these fluorescence quenching materials for ZEA was between 0.02 and 1.0 mg L−1, and the detection limit was 0.02 mg L−1 (S/N = 3). Finally, the MIFQP sensor was successfully applied for ZEA determination in corn with recoveries from 78% to 105% and the relative standard deviation (RSD %) was lower than 20%, which suggests its potential in actual applications.


Sign in / Sign up

Export Citation Format

Share Document