scholarly journals DFT and experimental analysis of aluminium chloride as a Lewis acid proton carrier catalyst for dimethyl carbonate carboxymethylation of alcohols

2017 ◽  
Vol 7 (20) ◽  
pp. 4859-4865 ◽  
Author(s):  
Saimeng Jin ◽  
Yin Tian ◽  
Con Robert McElroy ◽  
Dongqi Wang ◽  
James H. Clark ◽  
...  

In silico and physical experimental data led to a potential acid (AlCl3) catalysed mechanism for DMC carboxymethylation.

Physiology ◽  
2006 ◽  
Vol 21 (4) ◽  
pp. 289-296 ◽  
Author(s):  
Sriram M. Ajay ◽  
Upinder S. Bhalla

Synaptic plasticity provides a record of neuronal activity and is a likely basis for memory. The early apparent simplicity of the process of synaptic plasticity has been lost in a flood of experimental data that now implicates some 200 signaling molecules in cellular memory. It is now clear that these signaling networks perform surprisingly sophisticated cellular decisions that weigh factors such as input patterns, location of stimulus, history of activity, and context. Computer models have followed experiments into this maze of molecular detail, often matching closely with their experimental counterparts, but perhaps losing simplicity in the process. Here, we suggest that the merger of models and experiment have begun to restore the earlier simplicity by outlining a few key functional roles for signaling networks in synaptic plasticity. In this review, we discuss the current state of understanding of synaptic plasticity in terms of models and experiments.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 848
Author(s):  
Bogdan Sapiński ◽  
Paweł Orkisz ◽  
Łukasz Jastrzębski

The aim of the work is to investigate power flows in the vibration reduction system equipped with a magnetorheological (MR) damper and energy regeneration. For this purpose, experiments were conducted in the test rig compound of the shaker and the vibration reduction system (electromagnetic harvester, MR damper, spring) which are attached to the sprung mass. The experimental data acquired under sine excitations enabled us to analyze instantaneous power fluxes, as well as a rate of inertial energy changes in the system.


2021 ◽  
Vol 57 (2) ◽  
pp. 025001
Author(s):  
J E M Perea Martins

Abstract This work presents the design of an inexpensive electronic system to measure water temperature and generate an experimental data set used to verify the fitting between experimental and theoretical curves of a water-cooling process. The cooling constant is computed with three different theoretical methods to check their efficiency and this approach allows the association of theoretical and experimental aspects of physics, mathematics and electronic instrumentation, which can motivate interesting discussions in the classroom.


2020 ◽  
Author(s):  
Kobi Felton ◽  
Daniel Wigh ◽  
Alexei Lapkin

Recent work has shown how Bayesian optimization (BO) is an efficient method for optimizing expensive experiments such as chemical reactions. However, in previous studies, each optimization has been started from scratch with no information about previous or similar chemical optimization studies. Therefore, BO can still require more iterations than many experimental budgets provide. Here, we overcome this challenge using multi-task BO. Through<i> in silico</i> benchmarking studies, we show how past experimental data can be leveraged to improve the quality and speed of reaction optimization.


2015 ◽  
Vol 15 (1) ◽  
pp. 56-63
Author(s):  
Tri Esti Purbaningtias ◽  
Didik Prasetyoko ◽  
Hasliza Bahruji ◽  
Yusuf Muhammad Zein ◽  
Sugeng Triwahyono ◽  
...  

Aluminium chloride immobilized on mesoporous aluminosilicate was investigated as catalysts in the condensation of isatin with indole. AlCl3/mesoporous aluminosilicate (AlCl3/AM) catalysts were prepared by impregnation of 1, 5, 10 and 15 wt% AlCl3 on the surface of mesoporous aluminosilicate. A maximum conversion of isatin was achieved using 15% AlCl3/AM catalyst whereas the highest selectivity of 68.97% towards trisindoline was obtained using pure AM. The activity of the catalysts was depended on their acid site number and surface area. The number of Brønsted acid and the surface area affected to the conversion of isatin while the total acidity and the number of Lewis acid influenced the selectivity.


2020 ◽  
Author(s):  
Claudio Tomi-Andrino ◽  
Rupert Norman ◽  
Thomas Millat ◽  
Philippe Soucaille ◽  
Klaus Winzer ◽  
...  

AbstractMetabolic engineering in the post-genomic era is characterised by the development of new methods for metabolomics and fluxomics, supported by the integration of genetic engineering tools and mathematical modelling. Particularly, constraint-based stoichiometric models have been widely studied: (i) flux balance analysis (FBA) (in silico), and (ii) metabolic flux analysis (MFA) (in vivo). Recent studies have enabled the incorporation of thermodynamics and metabolomics data to improve the predictive capabilities of these approaches. However, an in-depth comparison and evaluation of these methods is lacking. This study presents a thorough analysis of two different in silico methods tested against experimental data (metabolomics and 13C-MFA) for the mesophile Escherichia coli. In particular, a modified version of the recently published matTFA toolbox was created, providing a broader range of physicochemical parameters. Validating against experimental data allowed the determination of the best physicochemical parameters to perform the TFA (Thermodynamics-based Flux Analysis). An analysis of flux pattern changes in the central carbon metabolism between 13C-MFA and TFA highlighted the limited capabilities of both approaches for elucidating the anaplerotic fluxes. In addition, a method based on centrality measures was suggested to identify important metabolites that (if quantified) would allow to further constrain the TFA. Finally, this study emphasised the need for standardisation in the fluxomics community: novel approaches are frequently released but a thorough comparison with currently accepted methods is not always performed.Author summaryBiotechnology has benefitted from the development of high throughput methods characterising living systems at different levels (e.g. concerning genes or proteins), allowing the industrial production of chemical commodities. Recently, focus has been placed on determining reaction rates (or metabolic fluxes) in the metabolic network of certain microorganisms, in order to identify bottlenecks hindering their exploitation. Two main approaches are commonly used, termed metabolic flux analysis (MFA) and flux balance analysis (FBA), based on measuring and estimating fluxes, respectively. While the influence of thermodynamics in living systems was accepted several decades ago, its application to study biochemical networks has only recently been enabled. In this sense, a multitude of different approaches constraining well-established modelling methods with thermodynamics has been suggested. However, physicochemical parameters are generally not properly adjusted to the experimental conditions, which might affect their predictive capabilities. In this study, we have explored the reliability of currently available tools by investigating the impact of varying said parameters in the simulation of metabolic fluxes and metabolite concentration values. Additionally, our in-depth analysis allowed us to highlight limitations and potential solutions that should be considered in future studies.


PLoS ONE ◽  
2014 ◽  
Vol 9 (11) ◽  
pp. e112082 ◽  
Author(s):  
Stefania Correale ◽  
Ivan de Paola ◽  
Carmine Marco Morgillo ◽  
Antonella Federico ◽  
Laura Zaccaro ◽  
...  

Author(s):  
Ashish Kotwal ◽  
Che-Hao Yang ◽  
Clement Tang

The current study shows computational and experimental analysis of multiphase flows (gas-liquid two-phase flow) in channels with sudden area change. Four test sections used for sudden contraction and expansion of area in experiments and computational analysis. These are 0.5–0.375, 0.5–0.315, 0.5–0.19, 0.5–0.14, inversely true for expansion channels. Liquid Flow rates ranging from 0.005 kg/s to 0.03 kg/s employed, while gas flow rates ranging from 0.00049 kg/s to 0.029 kg/s implemented. First, single-phase flow consists of only water, and second two-phase Nitrogen-Water mixture flow analyzed experimentally and computationally. For Single-phase flow, two mathematical models used for comparison: the two transport equations k-epsilon turbulence model (K-Epsilon), and the five transport equations Reynolds stress turbulence interaction model (RSM). A Eulerian-Eulerian multiphase approach and the RSM mathematical model developed for two-phase gas-liquid flows based on current experimental data. As area changes, the pressure drop observed, which is directly proportional to the Reynolds number. The computational analysis can show precise prediction and a good agreement with experimental data when area ratio and pressure differences are smaller for laminar and turbulent flows in circular geometries. During two-phase flows, the pressure drop generated shows reasonable dependence on void fraction parameter, regardless of numerical analysis and experimental analysis.


2021 ◽  
pp. 100204
Author(s):  
Candice Johnson ◽  
Lennart T. Anger ◽  
Romualdo Benigni ◽  
David Bower ◽  
Frank Bringezu ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Javad Aminian-Dehkordi ◽  
Seyyed Mohammad Mousavi ◽  
Arezou Jafari ◽  
Ivan Mijakovic ◽  
Sayed-Amir Marashi

AbstractBacillus megaterium is a microorganism widely used in industrial biotechnology for production of enzymes and recombinant proteins, as well as in bioleaching processes. Precise understanding of its metabolism is essential for designing engineering strategies to further optimize B. megaterium for biotechnology applications. Here, we present a genome-scale metabolic model for B. megaterium DSM319, iJA1121, which is a result of a metabolic network reconciliation process. The model includes 1709 reactions, 1349 metabolites, and 1121 genes. Based on multiple-genome alignments and available genome-scale metabolic models for other Bacillus species, we constructed a draft network using an automated approach followed by manual curation. The refinements were performed using a gap-filling process. Constraint-based modeling was used to scrutinize network features. Phenotyping assays were performed in order to validate the growth behavior of the model using different substrates. To verify the model accuracy, experimental data reported in the literature (growth behavior patterns, metabolite production capabilities, metabolic flux analysis using 13C glucose and formaldehyde inhibitory effect) were confronted with model predictions. This indicated a very good agreement between in silico results and experimental data. For example, our in silico study of fatty acid biosynthesis and lipid accumulation in B. megaterium highlighted the importance of adopting appropriate carbon sources for fermentation purposes. We conclude that the genome-scale metabolic model iJA1121 represents a useful tool for systems analysis and furthers our understanding of the metabolism of B. megaterium.


Sign in / Sign up

Export Citation Format

Share Document