Physical and chemical model of ion stability and movement within the dynamic and voltage-gated STM tip–surface tunneling junction

2017 ◽  
Vol 204 ◽  
pp. 159-172 ◽  
Author(s):  
Brandon E. Hirsch ◽  
Kevin P. McDonald ◽  
Steven L. Tait ◽  
Amar H. Flood

The interaction and mobility of ions in complex systems are fundamental to processes throughout chemistry, biology, and physics. However, nanoscale characterization of ion stability and migration remains poorly understood. Here, we examine ion movements to and from physisorbed molecular receptors at solution–graphite interfaces by developing a theoretical model alongside experimental scanning tunneling microscopy (STM) results. The model includes van der Waals forces and electrostatic interactions originating from the surface, tip, and physisorbed receptors, as well as a tip–surface electric field arising from the STM bias voltage (Vb). Our model reveals how both the electric field and tip–surface distance, dtip, can influence anion stability at the receptor binding sites on the surface or at the STM tip, as well as the size of the barrier for anion transitions between those locations. These predictions agree well with prior and new STM results from the interactions of anions with aryl-triazole receptors that order into functional monolayers on graphite. Scanning produces clear resolution at large magnitude negative surface biases (−0.8 V) while resolution degrades at small negative surface biases (−0.4 V). The loss in resolution arises from frequent tip retractions assigned to anion migration within the tip–surface tunneling region. This experimental evidence in combination with support from the model demonstrates a local voltage gating of anions with the STM tip inside physisorbed receptors. This generalized model and experimental evidence may help to provide a basis to understand the nanoscale details of related chemical transformations and their underlying thermodynamic and kinetic preferences.

Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 279
Author(s):  
Sergey Y. Sarvadii ◽  
Andrey K. Gatin ◽  
Vasiliy A. Kharitonov ◽  
Nadezhda V. Dokhlikova ◽  
Sergey A. Ozerin ◽  
...  

The adsorption of CO on the surface of Cu-based nanoparticles was studied in the presence of an external electric field by means of scanning tunneling microscopy (STM) and spectroscopy (STS). Nanoparticles were synthesized on the surface of a graphite support by the impregnation–precipitation method. The chemical composition of the surface of the nanoparticles was determined as a mixture of Cu2O, Cu4O3 and CuO oxides. CO was adsorbed from the gas phase onto the surface of the nanoparticles. During the adsorption process, the potential differences ΔV = +1 or −1 V were applied to the vacuum gap between the sample and the grounded tip. Thus, the system of the STM tip and sample surface formed an asymmetric capacitor, inside which an inhomogeneous electric field existed. The CO adsorption process is accompanied by the partial reduction of nanoparticles. Due to the orientation of the CO molecule in the electric field, the reduction was weak in the case of a positive potential difference, while in the case of a negative potential difference, the reduction rate increased significantly. The ability to control the adsorption process of CO by means of an external electric field was demonstrated. The size of the nanoparticle was shown to be the key factor affecting the adsorption process, and particularly, the strength of the local electric field close to the nanoparticle surface.


NANO ◽  
2008 ◽  
Vol 03 (02) ◽  
pp. 83-94
Author(s):  
XIAO JING MA ◽  
RUI ZHANG ◽  
YONG TAO SHEN ◽  
XIAO HUI QIU ◽  
YAN LIAN YANG ◽  
...  

We review the progress in observation of electrically induced conformational changes of a range of single molecules and molecular assemblies using scanning tunneling microscopy (STM). Recent results using species with optical active functional groups and supramolecular structures confirmed the previously observed effects that the cholesterol molecules with soft linkers have the conformational bistability when switching the bias polarity, while no discernable changes were observed for the mesogen molecules, containing rigid linking units. In addition, it was also observed that the linker units could have appreciable impacts on the assembling characteristics.


1993 ◽  
Vol 317 ◽  
Author(s):  
V. Milman ◽  
S.J. Pennycook ◽  
D.E. Jesson ◽  
M.C. Payne ◽  
I. Stich

ABSTRACTWe identify the binding sites for adsorption of a single Ge atom on the Si (100) surface using ab initio total energy calculations. The calculated diffusion barriers are in excellent agreement with experimental estimates. Using a large supercell we resolve the controversy regarding the binding geometry and migration path for the adatom, and investigate the influence of the adatom on the buckling of Si dimers. The adatom induces a buckling defect that is frequently observed using scanning tunneling Microscopy (STM); therefore the study of single adatoms may be experimentally accessible.


Surfaces ◽  
2018 ◽  
Vol 1 (1) ◽  
pp. 12-28 ◽  
Author(s):  
Tomasz Kosmala ◽  
Matías Blanco ◽  
Gaetano Granozzi ◽  
Klaus Wandelt

The modelling of long-range ordered nanostructures is still a major issue for the scientific community. In this work, the self-assembly of redox-active tetra(N-methyl-4-pyridyl)-porphyrin cations (H2TMPyP) on an iodine-modified Au(100) electrode surface has been studied by means of Cyclic Voltammetry (CV) and in-situ Electrochemical Scanning Tunneling Microscopy (EC-STM) with submolecular resolution. While the CV measurements enable conclusions about the charge state of the organic species, in particular, the potentio-dynamic in situ STM results provide new insights into the self-assembly phenomena at the solid-liquid interface. In this work, we concentrate on the regime of positive electrode potentials in which the adsorbed molecules are not reduced yet. In this potential regime, the spontaneous adsorption of the H2TMPyP molecules on the anion precovered surface yields the formation of up to five different potential-dependent long-range ordered porphyrin phases. Potentio-dynamic STM measurements, as a function of the applied electrode potential, show that the existing ordered phases are the result of a combination of van der Waals and electrostatic interactions.


1994 ◽  
Vol 9 (2) ◽  
pp. 259-262 ◽  
Author(s):  
Charles H. Olk ◽  
Joseph P. Heremans

Calculations predict that carbon nanotubes may exist as either semimetals or semiconductors, depending on diameter and degree of helicity. This communication presents experimental evidence supporting the calculations. Scanning tunneling microscopy and spectroscopy (STM-S) data taken in air on nanotubes with outer diameters from 17 to 90 Å show evidence of one-dimensional behavior; the current-voltage (I-V) characteristics are consistent with a density of states containing Van Hove type singularities for which the energies vary linearly with inverse nanotube diameter.


Sign in / Sign up

Export Citation Format

Share Document