Improving photocatalytic reduction of 4-nitrophenol over ZrO2–TiO2 by synergistic interaction between methanol and sulfite ions

2017 ◽  
Vol 41 (21) ◽  
pp. 12655-12663 ◽  
Author(s):  
Diana Guerrero-Araque ◽  
Próspero Acevedo-Peña ◽  
David Ramírez-Ortega ◽  
Ricardo Gómez

Reaction rate for 4-nitrophenol photoreduction over ZrO2–TiO2 increases 19 times due to the synergistic interaction between methanol and sulfite ions.

Author(s):  
Kathleen B. Reuter

The reaction rate and efficiency of piperazine to 1,4-diazabicyclo-octane (DABCO) depends on the Si/Al ratio of the MFI topology catalysts. The Al was shown to be the active site, however, in the Si/Al range of 30-200 the reaction rate increases as the Si/Al ratio increases. The objective of this work was to determine the location and concentration of Al to explain this inverse relationship of Al content with reaction rate.Two silicalite catalysts in the form of 1/16 inch SiO2/Al2O3 bonded extrudates were examined: catalyst A with a Si/Al of 83; and catalyst B, the acid/phosphate Al extracted form of catalyst A, with a Si/Al of 175. Five extrudates from each catalyst were fractured in the transverse direction and particles were obtained from the fracture surfaces near the center of the extrudate diameter. Particles were also obtained from the outside surfaces of five extrudates.


Author(s):  
C. S. Lin ◽  
W. A. Chiou ◽  
M. Meshii

The galvannealed steel sheets have received ever increased attention because of their excellent post-painting corrosion resistance and good weldability. However, its powdering and flaking tendency during press forming processes strongly impairs its performance. In order to optimize the properties of galvanneal coatings, it is critical to control the reaction rate between solid iron and molten zinc.In commercial galvannealing line, aluminum is added to zinc bath to retard the diffusion rate between iron and zinc by the formation of a thin layer of Al intermetallic compound on the surface of steel at initial hot-dip galvanizing. However, the form of this compound and its transformation are still speculated. In this paper, we report the direct observations of this compound and its transformation.The specimens were prepared in a hot-dip simulator in which the steel was galvanized in the zinc bath containing 0.14 wt% of Al at a temperature of 480 °C for 5 seconds and was quenched by liquid nitrogen.


2018 ◽  
Vol 37 (9) ◽  
pp. 808-813 ◽  
Author(s):  
Johannes Beller ◽  
Adina Wagner

Planta Medica ◽  
2012 ◽  
Vol 78 (11) ◽  
Author(s):  
A Weng ◽  
M Thakur ◽  
F Beceren-Braun ◽  
R Gilabert-Oriol ◽  
S Boettger ◽  
...  

TAPPI Journal ◽  
2018 ◽  
Vol 17 (11) ◽  
pp. 601-607
Author(s):  
Alan Rudie ◽  
Peter Hart

The use of 50% concentration and 10% concentration hydrogen peroxide were evaluated for chemical and mechanical pulp bleach plants at storage and at point of use. Several dangerous occurrences have been documented when the supply of 50% peroxide going into the pulping process was not stopped during a process failure. Startup conditions and leaking block valves during maintenance outages have also contributed to explosions. Although hazardous events have occurred, 50% peroxide can be stored safely with proper precautions and engineering controls. For point of use in a chemical bleach plant, it is recommended to dilute the peroxide to 10% prior to application, because risk does not outweigh the benefit. For point of use in a mechanical bleach plant, it is recommended to use 50% peroxide going into a bleach liquor mixing system that includes the other chemicals used to maintain the brightening reaction rate. When 50% peroxide is used, it is critical that proper engineering controls are used to mitigate any risks.


Author(s):  
M.A. Egyan ◽  

The article shows studies characterizing the quality of the squeeze: the mechanical composition of the squeeze is determined, the structural moisture of each component is determined, the sugar content in the formed process of sedimentation of the juice and its acidity are determined refractometrically. The kinetics of anthocyanins extraction was determined in two ways, the solids content in the extract was calculated, and the reaction rate constants of the extraction process and the efficiency coefficient of ultrasonic amplification of the extraction process speed were calculated.


2014 ◽  
Vol 28 (2) ◽  
pp. 231-237 ◽  
Author(s):  
Lech W. Szajdak ◽  
Jerzy Lipiec ◽  
Anna Siczek ◽  
Artur Nosalewicz ◽  
Urszula Majewska

Abstract The aim of this study was to verify first-order kinetic reaction rate model performance in predicting of leaching of atrazine and inorganic compounds (K+1, Fe+3, Mg+2, Mn+2, NH4 +, NO3 - and PO4 -3) from tilled and orchard silty loam soils. This model provided an excellent fit to the experimental concentration changes of the compounds vs. time data during leaching. Calculated values of the first-order reaction rate constants for the changes of all chemicals were from 3.8 to 19.0 times higher in orchard than in tilled soil. Higher first-order reaction constants for orchard than tilled soil correspond with both higher total porosity and contribution of biological pores in the former. The first order reaction constants for the leaching of chemical compounds enables prediction of the actual compound concentration and the interactions between compound and soil as affected by management system. The study demonstrates the effectiveness of simultaneous chemical and physical analyses as a tool for the understanding of leaching in variously managed soils.


Sign in / Sign up

Export Citation Format

Share Document