scholarly journals In situ structural modification of graphitic carbon nitride by alkali halides and influence on photocatalytic activity

RSC Advances ◽  
2017 ◽  
Vol 7 (52) ◽  
pp. 32592-32600 ◽  
Author(s):  
Yan Xu ◽  
Yinyan Gong ◽  
Hui Ren ◽  
Wenbo Liu ◽  
Lengyuan Niu ◽  
...  

Introducing alkali halides during thermal condensation of melamine disturbs periodic ordering in the basal plane, reduces the band gap, and facilitates charge carrier transfer and separation, and thus enhances the photocatalytic performance of g-C3N4.

2018 ◽  
Vol 5 (5) ◽  
pp. 180187 ◽  
Author(s):  
Yirong Qi ◽  
Qinghua Liang ◽  
Ruitao Lv ◽  
Wanci Shen ◽  
Feiyu Kang ◽  
...  

The key to solving environmental and energy issues through photocatalytic technology requires highly efficient, stable and eco-friendly photocatalysts. Graphitic carbon nitride (g-C 3 N 4 ) is one of the most promising candidates except for its limited photoactivity. In this work, a facile and scalable one-step method is developed to fabricate an efficient heterostructural g-C 3 N 4 photocatalyst in situ coupled with MoS 2 . The strong coupling effect between the MoS 2 nanosheets and g-C 3 N 4 scaffold, numerous mesopores and enlarged specific surface area helped form an effective heterojunction. As such, the photocatalytic activity of the g-C 3 N 4 /MoS 2 is more than three times higher than that of the pure g-C 3 N 4 in the degradation of RhB under visible light irradiation. Improvement of g-C 3 N 4 /MoS 2 photocatalytic performance is mainly ascribed to the effective suppression of the recombination of charge carriers.


2018 ◽  
Vol 20 (25) ◽  
pp. 17471-17476 ◽  
Author(s):  
Guilan Xu ◽  
Jianchen Shen ◽  
Shumei Chen ◽  
Yujie Gao ◽  
Huabin Zhang ◽  
...  

g-C3N4-based photocatalysts with double defects extend light absorption and promote charge carrier transfer and separation, significantly improving photocatalytic performance.


Nanomaterials ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 53 ◽  
Author(s):  
Yuanyuan Li ◽  
Xiaofang Tian ◽  
Yaoqiong Wang ◽  
Qimei Yang ◽  
Yue Diao ◽  
...  

Using solar energy to remove antibiotics from aqueous environments via photocatalysis is highly desirable. In this work, a novel type-II heterojunction photocatalyst, MgSn(OH)6/SnO2, was successfully prepared via a facile one-pot in situ hydrothermal method at 220 °C for 24 h. The obtained heterojunctions were characterized via powder X-ray diffraction, Fourier-transform infrared spectroscopy, transmission electron microscopy, and ultraviolet-visible diffuse reflectance spectroscopy. The photocatalytic performance was evaluated for photodegradation of tetracycline solution under ultraviolet irradiation. The initial concentration of tetracycline solution was set to be 20 mg/L. The prepared heterojunctions exhibited superior photocatalytic activity compared with the parent MgSn(OH)6 and SnO2 compounds. Among them, the obtained MgSn(OH)6/SnO2 heterojunction with MgCl2·6H2O:SnCl4·5H2O = 4:5.2 (mmol) displayed the highest photocatalytic performance and the photodegradation efficiency conversion of 91% could be reached after 60 min under ultraviolet irradiation. The prepared heterojunction maintained its performance after four successive cycles of use. Active species trapping experiments demonstrated that holes were the dominant active species. Hydroxyl radicals and superoxide ions had minor effects on the photocatalytic oxidation of tetracycline. Photoelectrochemical measurements were used to investigate the photocatalytic mechanism. The enhancement of photocatalytic activity could be assigned to the formation of a type-II junction photocatalytic system, which was beneficial for efficient transfer and separation of photogenerated electrons and holes. This research provides an in situ growth strategy for the design of highly efficient photocatalysts for environmental restoration.


RSC Advances ◽  
2015 ◽  
Vol 5 (112) ◽  
pp. 92033-92041 ◽  
Author(s):  
Xin Liu ◽  
Ailing Jin ◽  
Yushuai Jia ◽  
Junzhe Jiang ◽  
Na Hu ◽  
...  

An efficient composite photocatalyst fabricated by dispersing ultrafine Fe2O3 nanocrystals onto g-C3N4 nanosheets via a facile deposition-precipitation method shows significantly enhanced photocatalytic performance under visible light irradiation.


Catalysts ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 366 ◽  
Author(s):  
Hongwei Wang ◽  
Guiqing Huang ◽  
Zhiwei Chen ◽  
Weibing Li

In this study, we prepared carbon self-doped carbon nitride nanosheets through a glucose synergic co-condensation method. In the carbon self-doped structure, the N atoms in the triazine rings were substituted by C atoms, resulting in enhanced visible-light photocatalytic hydrogen production, which is three-times higher than that of bulk carbon nitride. The enhanced photocatalytic hydrogen production was attributed to the higher charge-carrier transfer rate and widened light absorption range of the carbon nitride nanosheets after carbon self-doping. Thus, this work highlights the importance of carbon self-doping for improving the photocatalytic performance. Meanwhile, it provides a feasible method for the preparation of carbon self-doped carbon nitride without destroying the 2D conjugated backbone structures.


Catalysts ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1005 ◽  
Author(s):  
Tae Hee Yoo ◽  
Heejoong Ryou ◽  
In Gyu Lee ◽  
Byung Jin Cho ◽  
Wan Sik Hwang

β-Ga2O3 has attracted considerable attention as an alternative photocatalyst to replace conventional TiO2 under ultraviolet-C irradiation due to its high reduction and oxidation potential. In this study, to enhance the photocatalytic activity of β-Ga2O3, nanofibers are formed via the electrospinning method, and Si atoms are subsequently doped. As the Si concentration in the β-Ga2O3 nanofiber increases, the optical bandgap of the β-Ga2O3 nanofibers continuously decreases from 4.5 eV (intrinsic) to 4.0 eV for the Si-doped (2.4 at. %) β-Ga2O3 nanofibers, and accordingly, the photocatalytic activity of the β-Ga2O3 nanofibers is enhanced. This higher photocatalytic performance with Si doping is attributed to the increased doping-induced carriers in the conduction band edges. This differs from the traditional mechanism in which the doping-induced defect sites in the bandgap enhance separation and inhibit the recombination of photon-generated carriers.


2015 ◽  
Vol 40 (39) ◽  
pp. 13431-13442 ◽  
Author(s):  
Sanjay B. Kokane ◽  
S.D. Sartale ◽  
K.G. Girija ◽  
Jagannath ◽  
R. Sasikala

2020 ◽  
Vol 1 (5) ◽  
pp. 1262-1272 ◽  
Author(s):  
Mahender Singh ◽  
Ashish Kumar ◽  
Venkata Krishnan

The BiOX/g-C3N4 composites showed enhanced photocatalytic performance towards organic pollutant degradation owing to the boosted charge transfer over the binary interfaces.


2019 ◽  
Vol 7 (42) ◽  
pp. 13211-13217 ◽  
Author(s):  
Kui Li ◽  
Ye-Zhan Lin ◽  
Yu Zhang ◽  
Mei-Ling Xu ◽  
Ling-Wang Liu ◽  
...  

MoS2–transition metal heterojunctions were adopted as cocatalysts on the earth-abundant g-C3N4 and displayed a synergistic effect on improving the photocatalytic performance.


Sign in / Sign up

Export Citation Format

Share Document