scholarly journals Multi-type quantum dots photo-induced doping enhanced graphene/semiconductor solar cell

RSC Advances ◽  
2017 ◽  
Vol 7 (53) ◽  
pp. 33413-33418 ◽  
Author(s):  
Jianghong Wu ◽  
Sirui Feng ◽  
Zhiqian Wu ◽  
Yanghua Lu ◽  
Shisheng Lin

ZnO and InP QDs were applied to improve the performance of graphene (Gr)/semiconductor solar cells, which can effectively hop light-induced carriers into Gr by absorbing incident light at the surface; under such cooperative doping, final PCE was improved by 34.2%.

2013 ◽  
Vol 1551 ◽  
pp. 137-142
Author(s):  
Neil S. Beattie ◽  
Guillaume Zoppi ◽  
Ian Farrer ◽  
Patrick See ◽  
Robert W. Miles ◽  
...  

ABSTRACTThe device performance of GaAs p-i-n solar cells containing stacked layers of self-assembled InAs quantum dots is investigated. The solar cells demonstrate enhanced external quantum efficiency below the GaAs band gap relative to a control device without quantum dots. This is attributed to the capture of sub-band gap photons by the quantum dots. Analysis of the current density versus voltage characteristic for the quantum dot solar cell reveals a decrease in the series resistance as the device area is reduce from 0.16 cm2 to 0.01 cm2. This is effect is not observed in control devices and is quantum dot related. Furthermore, low temperature measurements of the open circuit voltage for both quantum dot and control devices provide experimental verification of the conditions required to realise an intermediate band gap solar cell.


Nanomaterials ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 291 ◽  
Author(s):  
Askar A. Maxim ◽  
Shynggys N. Sadyk ◽  
Damir Aidarkhanov ◽  
Charles Surya ◽  
Annie Ng ◽  
...  

Perovskite solar cells (PSCs) with a standard sandwich structure suffer from optical transmission losses due to the substrate and its active layers. Developing strategies for compensating for the losses in light harvesting is of significant importance to achieving a further enhancement in device efficiencies. In this work, the down-conversion effect of carbon quantum dots (CQDs) was employed to convert the UV fraction of the incident light into visible light. For this, thin films of poly(methyl methacrylate) with embedded carbon quantum dots (CQD@PMMA) were deposited on the illumination side of PSCs. Analysis of the device performances before and after application of CQD@PMMA photoactive functional film on PSCs revealed that the devices with the coating showed an improved photocurrent and fill factor, resulting in higher device efficiency.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3397 ◽  
Author(s):  
Jong Lim ◽  
Woo Shin ◽  
Hyemi Hwang ◽  
Young-Chul Ju ◽  
Suk Ko ◽  
...  

Cut solar cells have received considerable attention recently as they can reduce electrical output degradation when the c-Si solar cells (crystalline-silicon solar cells) are shaded. Cut c-Si solar cells have a lower short-circuit current than normal solar cells and the decrease in short-circuit currents is similar to the shading effect of c-Si solar cells. However, the results of this study’s experiment show that the shadow effect of a c-Si solar cell reduces the V o c (open circuit voltage) in the c-Si solar cell but the V o c does not change when the c-Si solar cell is cut because the amount of incident light does not change. In this paper, the limitations of the electrical power analysis of the cut solar cells were identified when only photo current was considered and the analysis of the electric output of the cut c-Si solar cells was interpreted with a method different from that used in previous analyses. Electrical output was measured when the shaded and cut rates of c-Si solar cells were increased from 0% to 25, 50 and 75%, and a new theoretical model was compared with the experimental results using MATLAB.


2019 ◽  
Vol 43 (18) ◽  
pp. 7130-7135 ◽  
Author(s):  
Xiaomeng Zhu ◽  
Jing Sun ◽  
Shuai Yuan ◽  
Ning Li ◽  
Zhiwen Qiu ◽  
...  

The solar cell with carbon QDs-doped PCBM as its electron transporting layer shows the highest PCE of 18.1%.


Author(s):  
Hisaaki Nishimura ◽  
Takaya Maekawa ◽  
Kazushi Enomoto ◽  
Naoteru Shigekawa ◽  
Tomomi Takagi ◽  
...  

The sensitivity of Si solar cells to the UV portion of the solar spectrum is low, and must be increased to further improve their efficiencies.


2019 ◽  
Vol 16 (3) ◽  
pp. 230-234
Author(s):  
Subhasis Roy ◽  
Argha Dey ◽  
Bhaskar Chandra Das

A worldwide investigation is being carried out for improving the photoconversion efficiency of solar cells. Among all solar cells, quantum dots solar cell (QDSC) has proven as the best potential for photocurrent generator. The major focus of this research work is comparing the performance of QD based solar cells with and without the addition of synthesized dielectric nanomaterials for reducing recombination problems and higher the exciton generation. The selection of dielectric nanomaterial was carried out based on their good field-effect passivation, screened columbic attraction, enactment as a back reflector, and recombination inhibitor in solar cell. According to the above-mentioned factors lanthanum doped lead titanate Pb0.85La0.15TiO3 (PLT15) is a promising material for this research work. For improving the performance of QD based solar cells, the PLT15 paired mesoporous TiO2 electron transport layer (ETL) film was deposited onto fluorine-doped tin oxide (FTO) coated glass substrate using doctor blading technique followed by annealing the QD deposition onto the coated glass substrate was carried out via dipping of the glass into the QD solution for overnight. The QD used in this research work were namely – PbI3. Finally, the performance study was carried out which indicates that the introduction of dielectric material into the QDSC has proven to be as innovative and as well as efficient for improving the photocurrent conversion efficiency.


2019 ◽  
Vol 7 (24) ◽  
pp. 14753-14760 ◽  
Author(s):  
Mohammad Mahdi Tavakoli ◽  
Hadi Tavakoli Dastjerdi ◽  
Daniel Prochowicz ◽  
Pankaj Yadav ◽  
Rouhollah Tavakoli ◽  
...  

Down-shifting QDs together with moisture-assisted film growth enable a highly efficient and stable inverted perovskite solar cell with efficiency of over 20%.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 121 ◽  
Author(s):  
Lung-Chien Chen ◽  
Ching-Ho Tien ◽  
Zong-Liang Tseng ◽  
Jun-Hao Ruan

We describe a method to enhance power conversion efficiency (PCE) of MAPbI3 perovskite solar cell by inserting a FAPbX3 perovskite quantum dots (QD-FAPbX3) layer. The MAPbI3 and QD-FAPbX3 layers were prepared using a simple, rapid spin-coating method in a nitrogen-filled glove box. The solar cell structure consists of ITO/PEDOT:PSS/MAPbI3/QD-FAPbX3/C60/Ag, where PEDOT:PSS, MAPbI3, QD-FAPbX3, and C60 were used as the hole transport layer, light-absorbing layer, absorption enhance layer, and electron transport layer, respectively. The MAPbI3/QD-FAPbX3 solar cells exhibit a PCE of 7.59%, an open circuit voltage (Voc) of 0.9 V, a short-circuit current density (Jsc) of 17.4 mA/cm2, and a fill factor (FF) of 48.6%, respectively.


2019 ◽  
Vol 16 (2) ◽  
pp. 436-440
Author(s):  
Lekshmi Gangadhar ◽  
Anusha Kannan ◽  
P. K. Praseetha

The solar energy is one of the potential renewable green energy source considering the availability of sunlight in abundance and the need for clean and renewable source of energy. Quantum dots are semiconductor nanocrystals having considerable interest in photovoltaic research areas. Cadmium sulfide-sensitized solar cells are synthesized by Chemical bath deposition and titanium nanowires were fabricated by hydrothermal method. The synthesized CdS quantum dots are sensitized to nanoporous TiO2 films to form quantum dots-sensitized solar cell applications. The introduction of TNWs enables the electrolyte to penetrate easily inside the film which increases the interfacial contact between the nanowires, the quantum dots and the electrolyte results in improvement in efficiency of solar cell. The goal of our research is to understand the fundamental physics and performance of quantum dot-sensitized solar cells with improved photoconversion efficiency at the low cost based on selection of TiO2 nanostructures, sensitizers and electrodes through an integrated experimental and modeling study.


2007 ◽  
Vol 1031 ◽  
Author(s):  
Antonio Luque ◽  
Antonio Martí

AbstractWe describe the present state of the intermediate band (IB) solar cell research, a cell concept with very high efficiency potential. A comprehensive presentation of the theory is included followed of a description of its implementation using quantum dots and of the experiments performed to prove their principles. Present solar cells do not give today very high efficiencies; the steps to be given towards the real achievement of higher efficiencies is described and the use of alloys, instead of nanostructured materials, to fabricate IB cells is also discussed.


Sign in / Sign up

Export Citation Format

Share Document