scholarly journals Crystallinity depends on choice of iron salt precursor in the continuous hydrothermal synthesis of Fe–Co oxide nanoparticles

RSC Advances ◽  
2017 ◽  
Vol 7 (59) ◽  
pp. 37436-37440 ◽  
Author(s):  
Jian Liu ◽  
Isabella Römer ◽  
Selina Vi Yu Tang ◽  
Eugenia Valsami-Jones ◽  
Richard E. Palmer

A series of Fe–Co oxide nanoparticles (NPs) were prepared by a continuous hydrothermal method using iron nitrate and ammonium iron citrate as alternative iron precursors.

2014 ◽  
Vol 2 (33) ◽  
pp. 5344-5351 ◽  
Author(s):  
Jing Huang ◽  
Liya Wang ◽  
Xiaodong Zhong ◽  
Yuancheng Li ◽  
Lily Yang ◽  
...  

A simple non-hydrothermal method was developed for synthesizing sugar coated 3 nm magnetic nanoparticles with dual T1–T2 MRI contrast enhancement and fast clearance.


2019 ◽  
Vol 26 (09) ◽  
pp. 1950058
Author(s):  
SADEQ H. LAFTA ◽  
ALI ABDULRAHMAN TAHA ◽  
MUHAMMAD M. FARHAN ◽  
SHAIMA Y. ABDULFATTAH

Nanoparticles of alpha ferric oxide ([Formula: see text]-Fe2O3) were prepared by the hydrothermal method. Structural properties of [Formula: see text]-Fe2O3 were determined by XRD, SEM and AFM measurements. The particles had a good matching with standard pattern. Average particle size was about 90[Formula: see text]nm and the distribution extended from about 20[Formula: see text]nm to 120[Formula: see text]nm. Biocompatibility study of ferric oxide nanoparticles against bacteria, parasites, tumor cell line and normal cells was determined. No antibacterial activity was observed for the concentration, of ferric oxide nanoparticles in distilled water, up to 1.5[Formula: see text]mg/ml vs. E. coli and S. aureus. Moreover, MTT assay was used to determine the cytotoxicity against parasites and cells. Intermediate cytotoxicity (53.30%) of 1.5[Formula: see text]mg/ml of prepared nanoparticles was noted against L. tropica, while weak cytotoxicity of 5.20% was observed against L. donovani at the same concentration of ferric oxide nanoparticles. On the other hand, the prepared nanoparticles revealed low cytotoxicity (47.28%) against SR tumor cell line, while no cytotoxicity was shown against lymphocytes, as a model of normal cells.


2021 ◽  
Author(s):  
R. R. Samal ◽  
Aneeya K. Samantara ◽  
S. Mahalik ◽  
J. N. Behera ◽  
B. Dash ◽  
...  

Correction for ‘An anionic and cationic surfactant-assisted hydrothermal synthesis of cobalt oxide nanoparticles as the active electrode material for supercapacitors’ by R. R. Samal et al., New J. Chem., 2021, 45, 2795–2803; DOI: 10.1039/D0NJ05088A.


2021 ◽  
Author(s):  
Han Gao ◽  
Xianwei Zeng ◽  
Qiang Guo ◽  
Zhi Yang ◽  
Yanwen Deng ◽  
...  

Ca doped CuScO2 (CSO) delafossite oxides with 3-4 μm were synthesized through hydrothermal method using Cu(NO3)2•3H2O, Sc(NO3)3•xH2O as precursor at 240 °C for 24 h in this work. The influence...


2021 ◽  
Vol 1963 (1) ◽  
pp. 012043
Author(s):  
Saif Altimime ◽  
Sundus Q. Mohammed ◽  
Majid H. Hassoni ◽  
Ahmed N. Abd

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1040 ◽  
Author(s):  
Getachew Solomon ◽  
Raffaello Mazzaro ◽  
Vittorio Morandi ◽  
Isabella Concina ◽  
Alberto Vomiero

Molybdenum sulfide (MoS2) has emerged as a promising catalyst for hydrogen evolution applications. The synthesis method mainly employed is a conventional hydrothermal method. This method requires a longer time compared to other methods such as microwave synthesis methods. There is a lack of comparison of the two synthesis methods in terms of crystal morphology and its electrochemical activities. In this work, MoS2 nanosheets are synthesized using both hydrothermal (HT-MoS2) and advanced microwave methods (MW-MoS2), their crystal morphology, and catalytical efficiency towards hydrogen evolution reaction (HER) were compared. MoS2 nanosheet is obtained using microwave-assisted synthesis in a very short time (30 min) compared to the 24 h hydrothermal synthesis method. Both methods produce thin and aggregated nanosheets. However, the nanosheets synthesized by the microwave method have a less crumpled structure and smoother edges compared to the hydrothermal method. The as-prepared nanosheets are tested and used as a catalyst for hydrogen evolution results in nearly similar electrocatalytic performance. Experimental results showed that: HT-MoS2 displays a current density of 10 mA/cm2 at overpotential (−280 mV) compared to MW-MoS2 which requires −320 mV to produce a similar current density, suggesting that the HT-MoS2 more active towards hydrogen evolutions reaction.


2014 ◽  
Vol 68 (8) ◽  
Author(s):  
Selvakumar Dhanasingh ◽  
Dharmaraj Nallasamy ◽  
Saravanan Padmanapan ◽  
Vinod Padaki

AbstractThe influence of cetyltrimethylammonium bromide and ethylene glycol on the size and dispersion of indium oxide nanoparticles prepared under hydrothermal conditions was investigated. The precursor compound, indium hydroxide, obtained by the hydrothermal method in the absence as well as the presence of cetyltrimethylammonium bromide, was converted to indium oxide by sintering at 400°C. The formation of nanoscale indium oxide upon sintering was ascertained by the characteristic infrared adsorption bands and X-ray diffraction patterns of indium oxide. Transmission electron microscopy and band gap values confirmed that the cetyltrimethylammonium bromide facilitated the formation of indium oxide nanoparticles smaller in size and narrower in distribution than those prepared without the assistance of cetyltrimethylammonium bromide.


RSC Advances ◽  
2015 ◽  
Vol 5 (44) ◽  
pp. 34761-34768 ◽  
Author(s):  
B. Nageswara Rao ◽  
P. Ramesh Kumar ◽  
O. Padmaraj ◽  
M. Venkateswarlu ◽  
N. Satyanarayana

Porous α-Fe2O3 nanostructures were developed in the presence of a base catalyst by a rapid microwave assisted hydrothermal method.


Sign in / Sign up

Export Citation Format

Share Document