scholarly journals Driving dynamic colloidal assembly using eccentric self-propelled colloids

Soft Matter ◽  
2017 ◽  
Vol 13 (47) ◽  
pp. 8940-8946 ◽  
Author(s):  
Zhan Ma ◽  
Qun-li Lei ◽  
Ran Ni

Designing protocols to dynamically direct the self-assembly of colloidal particles has become an important direction in soft matter physics because of promising applications in the fabrication of dynamic responsive functional materials.

2010 ◽  
Vol 75 (3) ◽  
pp. 349-358 ◽  
Author(s):  
Francesco Sciortino

In this article I will review some recent studies of the phase behavior and of the self-assembly of patchy colloidal particles. These studies have been based on simple primitive models for colloid–colloid interactions, effectively extending to soft matter the seminal work of I. Nezbeda on associated fluids. I will discuss the possibilities offered by the study of the self-assembly of particles with limited valence in deepening our understanding of the onset of the liquid state, of the differences between gels and glasses and of the possible connection between physical and chemical gels. A review with 55 references.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3376
Author(s):  
Marco Scarel ◽  
Silvia Marchesan

Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


2013 ◽  
Vol 66 (1) ◽  
pp. 9 ◽  
Author(s):  
Yi Liu ◽  
Zhan-Ting Li

The chemistry of imine bond formation from simple aldehyde and amine precursors is among the most powerful dynamic covalent chemistries employed for the construction of discrete molecular objects and extended molecular frameworks. The reversible nature of the C=N bond confers error-checking and proof-reading capabilities in the self-assembly process within a multi-component reaction system. This review highlights recent progress in the self-assembly of complex organic molecular architectures that are enabled by dynamic imine chemistry, including molecular containers with defined geometry and size, mechanically interlocked molecules, and extended frameworks and polymers, from building blocks with preprogrammed steric and electronic information. The functional aspects associated with the nanometer-scale features not only place these dynamically constructed nanostructures at the frontier of materials sciences, but also bring unprecedented opportunities for the discovery of new functional materials.


Soft Matter ◽  
2018 ◽  
Vol 14 (15) ◽  
pp. 2893-2905 ◽  
Author(s):  
Zhenzhen Wang ◽  
Hui Cui ◽  
Zhimin Sun ◽  
Loïc M. Roch ◽  
Amanda N. Goldner ◽  
...  

A structure–property analysis of two tryptamine-derivatives augers well for templation of soft matter assemblies by l-tryptophan-based metabolites.


2018 ◽  
Author(s):  
Weimin Xuan ◽  
Robert Pow ◽  
Qi Zheng, ◽  
Nancy Watfa ◽  
De-Liang Long ◽  
...  

Template synthesis is a powerful and useful approach to build a variety of functional materials and complicated supramolecular systems. Systematic study on how templates structurally evolve from basic building blocks and then affect the templated self-assembly is critical to understand the underlying mechanism and gain more guidance for designed assembly but remains challenging. Here we describe the templated self-assembly of a series of gigantic Mo Blue (MB) clusters 1-4 using L-ornithine as structure-directing agent. L-ornithine is essential for the formation of such kind of template⊂host assemblies by providing directional forces of hydrogen bonding and electrostatic interactions. Based on the structural relationship between encapsulated templates of {Mo8} (1), {Mo17} (2) and {Mo36} (4), a plausible pathway of the structural evolution of templates is proposed, thus giving more insight on the templated self-assembly of Mo Blue clusters.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yan Cui ◽  
Hongyan Zhu ◽  
Jiandong Cai ◽  
Huibin Qiu

AbstractControlled self-assembly of colloidal particles into predetermined organization facilitates the bottom-up manufacture of artificial materials with designated hierarchies and synergistically integrated functionalities. However, it remains a major challenge to assemble individual nanoparticles with minimal building instructions in a programmable fashion due to the lack of directional interactions. Here, we develop a general paradigm for controlled co-assembly of soft block copolymer micelles and simple unvarnished hard nanoparticles through variable noncovalent interactions, including hydrogen bonding and coordination interactions. Upon association, the hairy micelle corona binds with the hard nanoparticles with a specific valence depending exactly on their relative size and feeding ratio. This permits the integration of block copolymer micelles with a diverse array of hard nanoparticles with tunable chemistry into multidimensional colloidal molecules and polymers. Secondary co-assembly of the resulting colloidal molecules further leads to the formation of more complex hierarchical colloidal superstructures. Notably, such colloidal assembly is processible on surface either through initiating the alternating co-assembly from a micelle immobilized on a substrate or directly grafting a colloidal oligomer onto the micellar anchor.


2019 ◽  
Vol 4 (6) ◽  
pp. 1416-1424 ◽  
Author(s):  
Jun Zhang ◽  
Falin Tian ◽  
Min Zhang ◽  
Tiefeng Li ◽  
Xueqian Kong ◽  
...  

The geometry of the organic ligands on colloidal nanoparticles (NPs) is central for understanding the self-assembly behavior and many properties of NP-based soft matter.


2021 ◽  
pp. 262-282
Author(s):  
David Rickard

The formation of framboids involves two distinct processes. First, pyrite microcrystals aggregate into spherical groups through surface free energy minimization. The self-assembly of framboid microcrystals to form framboids is consistent with estimations based on the classical Derjaguin-Landau-Verwey-Overbeek (DVLO) theory, which balances the attraction between particles due to the van der Waals forces against the interparticle electrostatic repulsive force. Second, the microcrystals rearrange themselves into ordered domains through entropy maximization. Icosahedral symmetry tends to minimize short-range attractive interactions and maximize entropy. The physical processes which facilitate this rearrangement are Brownian motion and surface interactions. Curved framboid interface enforce deviation from the cubic close packed structure. In the absence of a curved surface, weakly interacting colloidal particles preferentially self-assemble into a cubic close packed structure, and this is observed in irregular, non-framboidal aggregates of pyrite micro- and nanocrystals.


Science ◽  
2020 ◽  
Vol 369 (6506) ◽  
pp. 950-955
Author(s):  
Carla Fernández-Rico ◽  
Massimiliano Chiappini ◽  
Taiki Yanagishima ◽  
Heidi de Sousa ◽  
Dirk G. A. L. Aarts ◽  
...  

Understanding the impact of curvature on the self-assembly of elongated microscopic building blocks, such as molecules and proteins, is key to engineering functional materials with predesigned structure. We develop model “banana-shaped” colloidal particles with tunable dimensions and curvature, whose structure and dynamics are accessible at the particle level. By heating initially straight rods made of SU-8 photoresist, we induce a controllable shape deformation that causes the rods to buckle into banana-shaped particles. We elucidate the phase behavior of differently curved colloidal bananas using confocal microscopy. Although highly curved bananas only form isotropic phases, less curved bananas exhibit very rich phase behavior, including biaxial nematic phases, polar and antipolar smectic-like phases, and even the long-predicted, elusive splay-bend nematic phase.


Sign in / Sign up

Export Citation Format

Share Document