Framboid Self-Assembly and Self-Organization

2021 ◽  
pp. 262-282
Author(s):  
David Rickard

The formation of framboids involves two distinct processes. First, pyrite microcrystals aggregate into spherical groups through surface free energy minimization. The self-assembly of framboid microcrystals to form framboids is consistent with estimations based on the classical Derjaguin-Landau-Verwey-Overbeek (DVLO) theory, which balances the attraction between particles due to the van der Waals forces against the interparticle electrostatic repulsive force. Second, the microcrystals rearrange themselves into ordered domains through entropy maximization. Icosahedral symmetry tends to minimize short-range attractive interactions and maximize entropy. The physical processes which facilitate this rearrangement are Brownian motion and surface interactions. Curved framboid interface enforce deviation from the cubic close packed structure. In the absence of a curved surface, weakly interacting colloidal particles preferentially self-assemble into a cubic close packed structure, and this is observed in irregular, non-framboidal aggregates of pyrite micro- and nanocrystals.

Soft Matter ◽  
2021 ◽  
Author(s):  
Jiawei Lu ◽  
Xiangyu Bu ◽  
Xinghua Zhang ◽  
Bing Liu

The shapes of colloidal particles are crucial to the self-assembled superstructures. Understanding the relationship between the shapes of building blocks and the resulting crystal structures is an important fundamental question....


2014 ◽  
Vol 02 (01) ◽  
pp. 1440005 ◽  
Author(s):  
KAPARAPU GOUTHAM ◽  
ETHAYARAJA MANI

In this paper, we present direct evidences for two-stage mechanism of crystallization of patchy colloids from replica exchange Monte Carlo simulations. The patchy model colloid mimics the structure and interactions of a certain class of polyoxometalates (POM). We find that individual colloids self-assemble into two-dimensional sheets in hexagonal close-packed structure, and these sheets themselves stack to form crystals. The simulation explains the formation of hollow shell-like objects in POM solution [T. Liu, B. Imber, E. Diemann, G. Liu, K. Cokleski, H. Li, Z. Chen and A. Muller, J. Am. Chem. Soc.128, 15914 (2006)]. Simulation also predicted the formation of pentagonal caps that are essential for the formation of hollow, closed shells of POMs. Similar two-step crystallization of apoferritin protein was earlier found in experiments [S. T. Yau and P. G. Vekilov, Nature406, 494 (2000)]. The simulation study suggests nonclassical route to crystallization in patchy colloids.


1996 ◽  
Vol 432 ◽  
Author(s):  
San Yu ◽  
Shihai Kan ◽  
Guangtian Zou ◽  
Xiaogang Peng ◽  
Dongmei Li ◽  
...  

AbstractMonodisperse hematite cubes about 30nm in size have been prepared by aging a refluxing acidified aqueous solution of FeCl3 in an open vessel. The as grown nano cubes were determined to be single crystalline hematite in perfect cubic shapes using transmission electron microscope and electron diffraction. The nano cube is one of the equilibrium shapes of hematite, which is resumed to be formed by preferential growth in certain crystallographic directions through the species diffusion in the aqueous solutions.Some self-assembly prototypes have been observed, such as the short range ordered buildup consisting of several brick-like hematite nano cubes and the nano box consisted of square plates of hematite nanocrystals. The drive force for the formation of the above assemblies is assumed to be the unique magnetic feature of the single crystalline hematite nano cubes.The perfect shape and the self-assembly feature give a possibility to fabricate bulk ceramics orderly assembled using hematite nano cubes.


2014 ◽  
Vol 50 (60) ◽  
pp. 8157-8160 ◽  
Author(s):  
Iris W. Guo ◽  
Idah C. Pekcevik ◽  
Michael C. P. Wang ◽  
Brandy K. Pilapil ◽  
Byron D. Gates

Colloidal particles are prepared with a ‘spiky’ surface topography achieved by the self-assembly of gold nanorods onto the surfaces of spherical polystyrene cores. These core–shell assemblies exhibit surface plasmon resonance properties and serve as a platform for surface-enhanced Raman spectroscopy measurements.


2021 ◽  
Vol 7 (28) ◽  
pp. eabi7128
Author(s):  
Neha Yadav ◽  
Prosenjit Sen ◽  
Ambarish Ghosh

The role of quantum fluctuations in the self-assembly of soft materials is relatively unexplored, which could be important in the development of next-generation quantum materials. Here, we report two species of nanometer-sized bubbles in liquid helium-4 that contain six and eight electrons, forming a versatile, platform to study self-assembly at the intersection of classical and quantum worlds. These objects are formed through subtle interplay of the short-range electron-helium repulsion and easy deformability of the bulk liquid. We identify these nanometric bubbles in superfluid helium using cavitation threshold spectroscopy, visualize their decoration of quantized vortex lines, and study their creation through multiple methods. The objects were found to be stable for at least 15 milliseconds at 1.5 kelvin and can therefore allow fundamental studies of few-body quantum interactions under soft confinements.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 877
Author(s):  
Brunno C. Rocha ◽  
Sanjib Paul ◽  
Harish Vashisth

Entropy plays a key role in the self-assembly of colloidal particles. Specifically, in the case of hard particles, which do not interact or overlap with each other during the process of self-assembly, the free energy is minimized due to an increase in the entropy of the system. Understanding the contribution of entropy and engineering it is increasingly becoming central to modern colloidal self-assembly research, because the entropy serves as a guide to design a wide variety of self-assembled structures for many technological and biomedical applications. In this work, we highlight the importance of entropy in different theoretical and experimental self-assembly studies. We discuss the role of shape entropy and depletion interactions in colloidal self-assembly. We also highlight the effect of entropy in the formation of open and closed crystalline structures, as well as describe recent advances in engineering entropy to achieve targeted self-assembled structures.


2019 ◽  
Vol 7 (38) ◽  
pp. 11776-11782 ◽  
Author(s):  
Dongpeng Yang ◽  
Guolong Liao ◽  
Shaoming Huang

Invisible photonic prints that become visible by UV light irradiation were prepared via the self-assembly of Y2O3:Eu colloidal particles into amorphous photonic crystals (APCs) with controlled fluorescent and noniridescent structural colors.


2016 ◽  
Vol 7 (38) ◽  
pp. 5996-6002 ◽  
Author(s):  
Ziyi Yu ◽  
Yang Lan ◽  
Richard M. Parker ◽  
Wangqing Zhang ◽  
Xu Deng ◽  
...  

Thermal and light dual-responsive supramolecular colloidal microcapsules have been successfully prepared by combining cucurbit[8]uril-based host–guest recognition with the self-assembly of colloidal particles within microfluidic droplets.


2015 ◽  
Vol 112 (19) ◽  
pp. 5932-5937 ◽  
Author(s):  
Vincent Poulichet ◽  
Valeria Garbin

The self-assembly of solid particles at fluid–fluid interfaces is widely exploited to stabilize emulsions and foams, and in materials synthesis. The self-assembly mechanism is very robust owing to the large capillary energy associated with particle adsorption, of the order of millions of times the thermal energy for micrometer-sized colloids. The microstructure of the interfacial colloid monolayer can also favor stability, for instance in the case of particle-stabilized bubbles, which can be indefinitely stable against dissolution due to jamming of the colloid monolayer. As a result, significant challenges arise when destabilization and particle removal are a requirement. Here we demonstrate ultrafast desorption of colloid monolayers from the interface of particle-stabilized bubbles. We drive the bubbles into periodic compression–expansion using ultrasound waves, causing significant deformation and microstructural changes in the particle monolayer. Using high-speed microscopy we uncover different particle expulsion scenarios depending on the mode of bubble deformation, including highly directional patterns of particle release during shape oscillations. Complete removal of colloid monolayers from bubbles is achieved in under a millisecond. Our method should find a broad range of applications, from nanoparticle recycling in sustainable processes to programmable particle delivery in lab-on-a-chip applications.


Sign in / Sign up

Export Citation Format

Share Document