A self-forming dual-phase membrane for high-temperature electrochemical CO2 capture

2017 ◽  
Vol 5 (25) ◽  
pp. 12769-12773 ◽  
Author(s):  
Peng Zhang ◽  
Jingjing Tong ◽  
Kevin Huang

We report here a dual-phase mixed CO32−- and e−-conducting CO2 capture membrane self-formed at high temperatures from NiO and molten carbonate.

2016 ◽  
Vol 52 (63) ◽  
pp. 9817-9820 ◽  
Author(s):  
Peng Zhang ◽  
Jingjing Tong ◽  
Youngseok Jee ◽  
Kevin Huang

A high-selectivity and high-flux electrochemical silver-carbonate dual-phase membrane was coated with a nanoscaled ZrO2 layer by atomic layer deposition (ALD) for stable CO2 capture at high temperatures (≥800 °C).


2020 ◽  
Vol MA2020-02 (53) ◽  
pp. 3845-3845
Author(s):  
Xinfang Jin ◽  
Xin Li ◽  
Kevin Huang

2022 ◽  
pp. 120278
Author(s):  
Song Wang ◽  
Jingjing Tong ◽  
Liying Cui ◽  
Peng Zhang ◽  
Feng Zhou

2003 ◽  
Vol 762 ◽  
Author(s):  
A. Gordijn ◽  
J.K. Rath ◽  
R.E.I. Schropp

AbstractDue to the high temperatures used for high deposition rate microcrystalline (μc-Si:H) and polycrystalline silicon, there is a need for compact and temperature-stable doped layers. In this study we report on films grown by the layer-by-layer method (LbL) using VHF PECVD. Growth of an amorphous silicon layer is alternated by a hydrogen plasma treatment. In LbL, the surface reactions are separated time-wise from the nucleation in the bulk. We observed that it is possible to incorporate dopant atoms in the layer, without disturbing the nucleation. Even at high substrate temperatures (up to 400°C) doped layers can be made microcrystalline. At these temperatures, in the continuous wave case, crystallinity is hindered, which is generally attributed to the out-diffusion of hydrogen from the surface and the presence of impurities (dopants).We observe that the parameter window for the treatment time for p-layers is smaller compared to n-layers. Moreover we observe that for high temperatures, the nucleation of p-layers is more adversely affected than for n-layers. Thin, doped layers have been structurally, optically and electrically characterized. The best n-layer made at 400°C, with a thickness of only 31 nm, had an activation energy of 0.056 eV and a dark conductivity of 2.7 S/cm, while the best p-layer made at 350°C, with a thickness of 29 nm, had an activation energy of 0.11 V and a dark conductivity of 0.1 S/cm. The suitability of these high temperature n-layers has been demonstrated in an n-i-p microcrystalline silicon solar cell with an unoptimized μc-Si:H i-layer deposited at 250°C and without buffer. The Voc of the cell is 0.48 V and the fill factor is 70 %.


Alloy Digest ◽  
1995 ◽  
Vol 44 (3) ◽  

Abstract NICROFER 5520 Co is a nickel-chromium-cobalt-molybdenum alloy with excellent strength and creep properties up to high temperatures. Due to its balanced chemical composition the alloy shows outstanding resistance to high temperature corrosion in the form of oxidation and carburization. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ni-480. Producer or source: VDM Technologies Corporation.


Alloy Digest ◽  
1994 ◽  
Vol 43 (7) ◽  

Abstract Carlson Alloy C601 is characterized by high tensile, yield and creep-rupture strengths for high temperature service. The alloy is not embrittled by extended exposure to high temperatures and has excellent resistance to stress-corrosion cracking, to carburizing, nitriding and sulfur containing environments. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on forming, heat treating, machining, and joining. Filing Code: Ni-458. Producer or source: G.O. Carlson Inc.


Alloy Digest ◽  
2005 ◽  
Vol 54 (11) ◽  

Abstract Incotherm TD is a thermocouple-sheathing alloy with elements of silicon and rare earths to enhance oxidation resistance at high temperatures. This datasheet provides information on composition, physical properties, and tensile properties as well as deformation. It also includes information on high temperature performance and corrosion resistance as well as forming. Filing Code: Ni-628. Producer or source: Special Metals Corporation.


Alloy Digest ◽  
1954 ◽  
Vol 3 (12) ◽  

Abstract HASTELLOY Alloy X is a nickel-chromium-iron-molybdenum alloy recommended for high-temperature applications. It has outstanding oxidation resistance at high temperatures under most operating conditions, and good high-temperature strength. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on forming, heat treating, and machining. Filing Code: Ni-14. Producer or source: Haynes Stellite Company.


Alloy Digest ◽  
2011 ◽  
Vol 60 (11) ◽  

Abstract Kubota Alloy HT is an iron-chromium-nickel alloy that has both strength and oxidation resistance at high temperatures. This datasheet provides information on composition, physical properties, and tensile properties as well as creep. It also includes information on high temperature performance as well as casting and joining. Filing Code: SS-1108. Producer or source: Kubota Metal Corporation, Fahramet Division.


Sign in / Sign up

Export Citation Format

Share Document