Electronic structure and photocatalytic band offset of few-layer GeP2

2017 ◽  
Vol 5 (42) ◽  
pp. 22146-22155 ◽  
Author(s):  
Fazel Shojaei ◽  
Jae Ryang Hahn ◽  
Hong Seok Kang

Based on a sophisticated crystal structure prediction method, we propose two-dimensional (2D) GeP2in the tetragonal (T) phase never observed for other group IV–V compounds.

2017 ◽  
Vol 8 (7) ◽  
pp. 4926-4940 ◽  
Author(s):  
Alexander G. Shtukenberg ◽  
Qiang Zhu ◽  
Damien J. Carter ◽  
Leslie Vogt ◽  
Johannes Hoja ◽  
...  

Crystal structures of four new coumarin polymorphs were solved by crystal structure prediction method and their lattice and free energies were calculated by advanced techniques.


Minerals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 98
Author(s):  
Jordi Ibáñez-Insa

The crystal structures of newly found minerals are routinely determined using single-crystal techniques. However, many rare minerals usually form micrometer-sized aggregates that are difficult to study with conventional structural methods. This is the case for numerous platinum-group minerals (PGMs) such as, for instance, zaccariniite (RhNiAs), the crystal structure of which was first obtained by studying synthetic samples. The aim of the present work is to explore the usefulness of USPEX, a powerful crystal structure prediction method, as an alternative means of determining the crystal structure of minerals such as zaccariniite, with a relatively simple crystal structure and chemical formula. We show that fixed composition USPEX searches with a variable number of formula units, using the ideal formula of the mineral as the only starting point, successfully predict the tetragonal structure of a mineral. Density functional theory (DFT) calculations can then be performed in order to more tightly relax the structure of the mineral and calculate different fundamental properties, such as the frequency of zone-center Raman-active phonons, or even their pressure behavior. These theoretical data can be subsequently compared to experimental results, which, in the case of newly found minerals, would allow one to confirm the correctness of the crystal structure predicted by the USPEX code.


2020 ◽  
Vol 22 (16) ◽  
pp. 8442-8449 ◽  
Author(s):  
Pedro Borlido ◽  
Ahmad W. Huran ◽  
Miguel A. L. Marques ◽  
Silvana Botti

A theoretical study of the phase diagram of two-dimensional silicon–carbon binaries unveils a large variety of electronic properties.


2018 ◽  
Vol 140 (32) ◽  
pp. 10158-10168 ◽  
Author(s):  
Kevin Ryan ◽  
Jeff Lengyel ◽  
Michael Shatruk

RSC Advances ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 3577-3581 ◽  
Author(s):  
Nursultan Sagatov ◽  
Pavel N. Gavryushkin ◽  
Talgat M. Inerbaev ◽  
Konstantin D. Litasov

We carried out ab initio calculations on the crystal structure prediction and determination of P–T diagrams within the quasi-harmonic approximation for Fe7N3 and Fe7C3.


CrystEngComm ◽  
2021 ◽  
Author(s):  
Jianjun Hu ◽  
Wenhui Yang ◽  
Rongzhi Dong ◽  
Yuxin Li ◽  
Xiang Li ◽  
...  

Crystal structure prediction is now playing an increasingly important role in the discovery of new materials or crystal engineering.


Author(s):  
Suryakanti Debata ◽  
Smruti R. Sahoo ◽  
Rudranarayan Khatua ◽  
Sridhar Sahu

In this study, we present an effective molecular design strategy to develop the n-type charge transport characteristics in organic semiconductors, using ring-fused double perylene diimides (DPDIs) as the model compounds.


Sign in / Sign up

Export Citation Format

Share Document