scholarly journals Polymer microchamber arrays for geometry-controlled drug release: a functional study in human cells of neuronal phenotype

2019 ◽  
Vol 7 (6) ◽  
pp. 2358-2371 ◽  
Author(s):  
Olga Kopach ◽  
Kayiu Zheng ◽  
Olga A. Sindeeva ◽  
Meiyu Gai ◽  
Gleb B. Sukhorukov ◽  
...  

Polyelectrolyte multilayer (PEM) microchambers can provide a versatile cargo delivery system enabling rapid, site-specific drug release on demand.

2016 ◽  
Vol 52 (95) ◽  
pp. 13775-13778 ◽  
Author(s):  
Xin Wang ◽  
Li-Li Tan ◽  
Xi Li ◽  
Nan Song ◽  
Zheng Li ◽  
...  

A new drug delivery system, based on mesoporous silica nanoparticles gated by carboxylatopillar[5]arene-modified gold nanoparticles, has been fabricated for controlled drug release.


Small ◽  
2021 ◽  
pp. 2100753
Author(s):  
Ya‐Xuan Zhu ◽  
Hao‐Ran Jia ◽  
Yuxin Guo ◽  
Xiaoyang Liu ◽  
Ningxuan Zhou ◽  
...  

2021 ◽  
Author(s):  
Lingzi Liu ◽  
Xiaoyan Sun ◽  
Baofen Ye ◽  
Zhengyu Yan

Particle-based delivery system has merged as a powerful platform in controlled drug release. The present study developed a new inverse opal hydrogel microcarriers system composed of gold nanorods (AuNRs) for...


2021 ◽  
Vol 9 (1) ◽  
pp. 38-50
Author(s):  
Hien Phan ◽  
Vincenzo Taresco ◽  
Jacques Penelle ◽  
Benoit Couturaud

Stimuli-responsive amphiphilic block copolymers obtained by PISA have emerged as promising nanocarriers for enhancing site-specific and on-demand drug release in response to a range of stimuli such as pH, redox agents, light or temperature.


2002 ◽  
Vol 55 (1-2) ◽  
pp. 17-19 ◽  
Author(s):  
M Babincová ◽  
P Čičmanec ◽  
V Altanerová ◽  
Č Altaner ◽  
P Babinec

2016 ◽  
Vol 52 (69) ◽  
pp. 10525-10528 ◽  
Author(s):  
Saemi O. Poelma ◽  
Seung Soo Oh ◽  
Sameh Helmy ◽  
Abigail S. Knight ◽  
G. Leslie Burnett ◽  
...  

We present a one-photon visible light-responsive micellar system for efficient, on-demand delivery of small molecules.


Author(s):  
SHIKHA KESHARVANI ◽  
PANKAJ KUMAR JAISWAL ◽  
ALOK MUKERJEE ◽  
AMIT KUMAR SINGH

Objective: The main objective of this study was to develop and evaluate the eudragit and HPMC coated metformin hydrochloride floating microspheres, in which HPMC helps in floating and eudragit as a coating material for a site-specific drug release in a controlled manner and the active moiety metformin used as anti-hyperglycemic agent. Methods: The floating microsphere was prepared by the solvent evaporation method incorporating metformin as a model drug. The prepared floating microsphere were characterized for particle size, %yield, drug loading and entrapment efficiency, compatibility study, %buoyancy, surface morphology and In vitro drug release and release kinetics. Results: The result metformin loaded floating microsphere was successfully prepared and the particle size range from 397±23.22 to 595±15.82 µm, the entrapment efficiency range from 83.49±1.33 to 60.02±1.65% and drug loading capacity range from 14.3±0.54 to 13.31±0.47% and %buoyancy range from 85.67±0.58 to 80.67±1.15%. The FT-IR and X-RD analysis confirmed that no any interaction between drug and excipient, and surface morphology confirmed those particles are sphere. The floating microsphere show maximum 96% drug release in pH 0.1N HCL and follow the Korsmeyer peppas model of the super case-2 transport mechanism. Conclusion: These results suggest that metformin loaded floating microspheres could be retain in stomach for long time and give site specific drug release in controlled manner.


2019 ◽  
Vol 220 (17) ◽  
pp. 1900188
Author(s):  
Vuk V. Filipović ◽  
Marija M. Babić ◽  
Dejan Gođevac ◽  
Aleksandar Pavić ◽  
Jasmina Nikodinović‐Runić ◽  
...  

2019 ◽  
Vol 7 (14) ◽  
pp. 2261-2276 ◽  
Author(s):  
Yufei Bian ◽  
Zhiyong Wei ◽  
Zefeng Wang ◽  
Zhu Tu ◽  
Liuchun Zheng ◽  
...  

A facile method of end-functionalization was used to synthesize a series of fluorescent biodegradable polyesters with tailorable physical properties, which can promisingly be applied in the biomedical field as a controllable and traceable drug delivery system, especially for long-term controlled drug release.


Sign in / Sign up

Export Citation Format

Share Document