Matrix metalloproteinase targeted peptide vesicles for delivering anticancer drugs

2018 ◽  
Vol 54 (67) ◽  
pp. 9309-9312 ◽  
Author(s):  
Debmalya Bhunia ◽  
Krishnangsu Pradhan ◽  
Gaurav Das ◽  
Subhajit Ghosh ◽  
Prasenjit Mondal ◽  
...  

A matrix metalloproteinase (MMP) targeted tetrapeptide vesicle strongly binds at a MMP9 enzymatic site and delivers an anticancer drug into cancer cells. Further, it induces superior apoptotic death and inhibits the metastatic cancer cell migration and growth of multicellular 3D spheroids.

2018 ◽  
Vol 29 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Matthew R. Zanotelli ◽  
Zachary E. Goldblatt ◽  
Joseph P. Miller ◽  
Francois Bordeleau ◽  
Jiahe Li ◽  
...  

Cell migration in a three-dimensional matrix requires that cells either remodel the surrounding matrix fibers and/or squeeze between the fibers to move. Matrix degradation, matrix remodeling, and changes in cell shape each require cells to expend energy. While significant research has been performed to understand the cellular and molecular mechanisms guiding metastatic migration, less is known about cellular energy regulation and utilization during three-dimensional cancer cell migration. Here we introduce the use of the genetically encoded fluorescent biomarkers, PercevalHR and pHRed, to quantitatively assess ATP, ADP, and pH levels in MDA-MB-231 metastatic cancer cells as a function of the local collagen microenvironment. We find that the use of the probe is an effective tool for exploring the thermodynamics of cancer cell migration and invasion. Specifically, we find that the ATP:ADP ratio increases in cells in denser matrices, where migration is impaired, and it decreases in cells in aligned collagen matrices, where migration is facilitated. When migration is pharmacologically inhibited, the ATP:ADP ratio decreases. Together, our data indicate that matrix architecture alters cellular energetics and that intracellular ATP:ADP ratio is related to the ability of cancer cells to effectively migrate.


2010 ◽  
Vol 24 (3) ◽  
pp. 598-607 ◽  
Author(s):  
Prajna Mishra ◽  
Subramanian Senthivinayagam ◽  
Velusamy Rangasamy ◽  
Gautam Sondarva ◽  
Basabi Rana

Abstract Gastrin is a gastrointestinal peptide hormone, secreted by the gastric G cells and can exist as a fully processed amidated form (G17) or as unprocessed forms. All forms of gastrin possess trophic properties towards the gastrointestinal mucosa. An understanding of the signaling pathways involved is important to design therapeutic approaches to target gastrin-mediated cellular events. The studies described here were designed to identify the signaling pathways by which amidated gastrin (G17) mediates cancer cell migration. These studies indicated a time- and dose-dependent increase in gastric cancer cell migration after G17 stimulation, involving cholecystokinin 2 receptor. G17-induced migration was preceded by activation of MAPK pathways and was antagonized after pretreatment with SP600125, a pharmacological inhibitor of c-Jun-NH2-terminal kinase (JNK) pathway. Knockdown of endogenous JNK1 expression via small interference RNA (JNK1-siRNA) inhibited G17-induced phosphorylation of c-Jun and migration, and overexpression of wild-type JNK1 or constitutive active JNK1 promoted G17-induced migration. Studies designed to identify the MAPK kinase kinase member mediating JNK activation indicated the involvement of mixed lineage kinase-3 (MLK3), which was transiently activated upon G17 treatment. Inhibition of MLK3 pathway via a pan-MLK inhibitor or knockdown of MLK3 expression by MLK3-siRNA antagonized G17-induced migration. Incubation with G17 also resulted in an induction of matrix metalloproteinase 7 promoter activity, which is known to mediate migration and invasion pathways in cancer cells. Modulation of MLK3, JNK1, and c-Jun pathways modulated G17-induced matrix metalloproteinase 7 promoter activation. These studies indicate that the MLK3/JNK1 axis mediates G17-induced gastric cancer cell migration, which can be targeted for designing novel therapeutic strategies for treating gastric malignancies.


2013 ◽  
Vol 4 (2) ◽  
pp. 191-196 ◽  
Author(s):  
Shilong Zheng ◽  
Qiu Zhong ◽  
Quan Jiang ◽  
Madhusoodanan Mottamal ◽  
Qiang Zhang ◽  
...  

2012 ◽  
Vol 214 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Jorge Diaz ◽  
Evelyn Aranda ◽  
Soledad Henriquez ◽  
Marisol Quezada ◽  
Estefanía Espinoza ◽  
...  

Progesterone and progestins have been demonstrated to enhance breast cancer cell migration, although the mechanisms are still not fully understood. The protease-activated receptors (PARs) are a family of membrane receptors that are activated by serine proteases in the blood coagulation cascade. PAR1 (F2R) has been reported to be involved in cancer cell migration and overexpressed in breast cancer. We herein demonstrate that PAR1 mRNA and protein are upregulated by progesterone treatment of the breast cancer cell lines ZR-75 and T47D. This regulation is dependent on the progesterone receptor (PR) but does not require PR phosphorylation at serine 294 or the PR proline-rich region mPRO. The increase in PAR1 mRNA was transient, being present at 3 h and returning to basal levels at 18 h. The addition of a PAR1-activating peptide (aPAR1) to cells treated with progesterone resulted in an increase in focal adhesion (FA) formation as measured by the cellular levels of phosphorylated FA kinase. The combined but not individual treatment of progesterone and aPAR1 also markedly increased stress fiber formation and the migratory capacity of breast cancer cells. In agreement with in vitro findings, data mining from the Oncomine platform revealed that PAR1 expression was significantly upregulated in PR-positive breast tumors. Our observation that PAR1 expression and signal transduction are modulated by progesterone provides new insight into how the progestin component in hormone therapies increases the risk of breast cancer in postmenopausal women.


2021 ◽  
Author(s):  
Ping Zhou ◽  
Bo Liu ◽  
Mingming Luan ◽  
Na Li ◽  
Bo Tang

Cancer cell migration and invasion are initial steps for tumor metastasis that increases patient mortality. Tumor microenvironment is characterized by hypoxic and low nutrient-containing. Previous studies have suggested that hypoxia...


Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4293
Author(s):  
Xiaowen Liu ◽  
Manuel A. Riquelme ◽  
Yi Tian ◽  
Dezhi Zhao ◽  
Francisca M. Acosta ◽  
...  

ATP released by bone osteocytes is shown to activate purinergic signaling and inhibit the metastasis of breast cancer cells into the bone. However, the underlying molecular mechanism is not well understood. Here, we demonstrate the important roles of the CXCR4 and P2Y11 purinergic receptors in mediating the inhibitory effect of ATP on breast cancer cell migration and bone metastasis. Wound-healing and transwell migration assays showed that non-hydrolysable ATP analogue, ATPγS, inhibited migration of bone-tropic human breast cancer cells in a dose-dependent manner. BzATP, an agonist for P2X7 and an inducer for P2Y11 internalization, had a similar dose-dependent inhibition on cell migration. Both ATPγS and BzATP suppressed the expression of CXCR4, a chemokine receptor known to promote breast cancer bone metastasis, and knocking down CXCR4 expression by siRNA attenuated the inhibitory effect of ATPγS on cancer cell migration. While a P2X7 antagonist A804598 had no effect on the impact of ATPγS on cell migration, antagonizing P2Y11 by NF157 ablated the effect of ATPγS. Moreover, the reduction in P2Y11 expression by siRNA decreased cancer cell migration and abolished the impact of ATPγS on cell migration and CXCR4 expression. Similar to the effect of ATPγS on cell migration, antagonizing P2Y11 inhibited bone-tropic breast cancer cell migration in a dose-dependent manner. An in vivo study using an intratibial bone metastatic model showed that ATPγS inhibited breast cancer growth in the bone. Taken together, these results suggest that ATP inhibits bone-tropic breast cancer cells by down-regulating the P2Y11 purinergic receptor and the down-regulation of CXCR4 expression.


Sign in / Sign up

Export Citation Format

Share Document