Microwave-assisted synthesis of urea-containing zirconium metal–organic frameworks for heterogeneous catalysis of Henry reactions

CrystEngComm ◽  
2019 ◽  
Vol 21 (9) ◽  
pp. 1358-1362 ◽  
Author(s):  
He Zhang ◽  
Xue-Wang Gao ◽  
Li Wang ◽  
Xinsheng Zhao ◽  
Qiu-Yan Li ◽  
...  

A urea-containing UiO-68 isoreticular zirconium metal–organic framework with mixed dicarboxylate struts can work as an efficient hydrogen-bond-donating heterogeneous catalyst for Henry reactions of benzaldehydes and nitroalkanes.

RSC Advances ◽  
2018 ◽  
Vol 8 (31) ◽  
pp. 17471-17476 ◽  
Author(s):  
Yunhui Yang ◽  
Xiaofei Liu ◽  
Dan Yan ◽  
Ping Deng ◽  
Zhiyong Guo ◽  
...  

A luminescent metal–organic framework have been realized for efficiently sensing hydrazine hydrate.


2018 ◽  
Vol 54 (22) ◽  
pp. 2735-2738 ◽  
Author(s):  
Andrey A. Bezrukov ◽  
Karl W. Törnroos ◽  
Erwan Le Roux ◽  
Pascal D. C. Dietzel

A dimeric Zr12 oxo cluster was used as new molecular building block in construction of metal–organic frameworks utilizing the precursor approach.


2019 ◽  
Vol 31 (3) ◽  
pp. 367-388 ◽  
Author(s):  
Ayesha Rehman ◽  
Sarah Farrukh ◽  
Arshad Hussain ◽  
Erum Pervaiz

The most important environmental challenge that the world is facing today is the control of the quantity of CO2 in the atmosphere, because it causes global warming. Increase in the global temperature results in greenhouse gas emission, interruption of the volcanic activity, and climatic changes. The alarming rise of the CO2 level impels to take some serious action to control these climatic changes. Various techniques are being utilized to capture CO2. However, chemical absorption and adsorption are supposed to be the most suitable techniques for post-combustion CO2 capture, but the main focus is on adsorption. The aim of this study is to provide a brief overview on the CO2 adsorption by a novel class of adsorbents called the metal–organic framework. The metal–organic framework is a porous material having high surface area with high CO2 adsorption capacity. The metal–organic frameworks possess dynamic structure and have large capacity to adsorb CO2 at either low pressure or high pressure due to its cavity size and surface area. Adsorption of CO2 in the metal–organic framework at various pressures depends upon pore volume and heat of adsorption correspondingly. In this review, different synthesis methods of the metal–organic framework such as slow evaporation, solvo thermal, mechanochemical, electrochemical, sonochemical, and microwave-assisted synthesis are briefly described as the structure of the metal–organic frameworks are mostly dependent upon synthesis techniques. In addition to this, different strategies are discussed to increase the CO2 adsorption capacity in the metal organic-framework. [Formula: see text]


CrystEngComm ◽  
2015 ◽  
Vol 17 (29) ◽  
pp. 5502-5510 ◽  
Author(s):  
Gustavo H. Albuquerque ◽  
Robert C. Fitzmorris ◽  
Majid Ahmadi ◽  
Nick Wannenmacher ◽  
Praveen K. Thallapally ◽  
...  

A representation of the continuous flow microwave-assisted synthesis of the metal organic framework, MOF-74(Ni). Precursor solutions flow through a microwave nucleation zone leading to the formation of MOF-74(Ni).


2015 ◽  
Vol 44 (31) ◽  
pp. 14019-14026 ◽  
Author(s):  
Marco Taddei ◽  
Phuong V. Dau ◽  
Seth M. Cohen ◽  
Marco Ranocchiari ◽  
Jeroen A. van Bokhoven ◽  
...  

The microwave assisted synthesis of UiO-66 was optimized and scaled up to multigram production, evaluating the efficiency of the process by means of four quantitative indicators.


2021 ◽  
Author(s):  
Mahmoud Y. Zorainy ◽  
Serge Kaliaguine ◽  
Mohamed Gobara ◽  
Sherif Elbasuney ◽  
Daria C. Boffito

Abstract The 3D metal-organic framework (MOF), MIL-88B, built from the trivalent metal ions and the ditopic 1,4-Benzene dicarboxylic acid linker (H2BDC), distinguishes itself from the other MOFs for its flexibility and high thermal stability. MIL-88B was synthesized by a rapid microwave-assisted solvothermal method at high power (850 W). The iron-based MIL-88B [Fe3.O.Cl.(O2C-C6H4 -CO2)3] exposed oxygen and iron content of 29% and 24%, respectively, which offers unique properties as an oxygen-rich catalyst for energetic systems. Upon dispersion in an organic solvent and integration into ammonium perchlorate (AP) (the universal oxidizer for energetic systems), the dispersion of the MOF particles into the AP energetic matrix was uniform (investigated via elemental mapping using an EDX detector). Therefore, MIL-88B(Fe) could probe AP decomposition with the exclusive formation of mono-dispersed Fe2O3 nanocatalyst during the AP decomposition. The evolved nanocatalyst can offer superior combustion characteristics. XRD pattern for the MIL-88B(Fe) framework TGA residuals confirmed the formation of α-Fe2O3 nanocatalyst as a final product. The catalytic efficiency of MIL-88B(Fe) on AP thermal behavior was assessed via DSC and TGA. AP solely demonstrated a decomposition enthalpy of 733 J g-1 , while AP/MIL-88B(Fe) showed a 66% higher decomposition enthalpy of 1218 J g-1 ; the main exothermic decomposition temperature was decreased by 71 °C. Besides, MIL-88B(Fe) resulted in a decrease in AP decomposition activation energy by 23% and 25% using Kissinger and Kissinger–Akahira–Sunose (KAS) models, respectively.


2014 ◽  
Vol 1 (10) ◽  
pp. 721-734 ◽  
Author(s):  
Sha Ou ◽  
Chuan-De Wu

The recently developed strategies on designed synthesis of porous metal–organic framework catalysts and their interesting catalytic properties are summarized in this short review.


Sign in / Sign up

Export Citation Format

Share Document