Biomolecule-assisted green synthesis of nanostructured calcium phosphates and their biomedical applications

2019 ◽  
Vol 48 (10) ◽  
pp. 2698-2737 ◽  
Author(s):  
Chao Qi ◽  
Sara Musetti ◽  
Lian-Hua Fu ◽  
Ying-Jie Zhu ◽  
Leaf Huang

Biomolecules play important roles in the synthesis of nanostructured calcium phosphates with various sizes and morphologies and promising applications.

2020 ◽  
Vol 26 (40) ◽  
pp. 5188-5204
Author(s):  
Uzair Nagra ◽  
Maryam Shabbir ◽  
Muhammad Zaman ◽  
Asif Mahmood ◽  
Kashif Barkat

Nanosized particles, with a size of less than 100 nm, have a wide variety of applications in various fields of nanotechnology and biotechnology, especially in the pharmaceutical industry. Metal nanoparticles [MNPs] have been synthesized by different chemical and physical procedures. Still, the biological approach or green synthesis [phytosynthesis] is considered as a preferred method due to eco-friendliness, nontoxicity, and cost-effective production. Various plants and plant extracts have been used for the green synthesis of MNPs, including biofabrication of noble metals, metal oxides, and bimetallic combinations. Biomolecules and metabolites present in plant extracts cause the reduction of metal ions into nanosized particles by one-step preparation methods. MNPs have remarkable attractiveness in biomedical applications for their use as potential antioxidant, anticancer and antibacterial agents. The present review offers a comprehensive aspect of MNPs production via top-to-bottom and bottom-to-top approach with considerable emphasis on green technology and their possible biomedical applications. The critical parameters governing the MNPs formation by plant-based synthesis are also highlighted in this review.


2021 ◽  
Vol 29 ◽  
pp. e00304
Author(s):  
Zhaoxuan Feng ◽  
Karin H. Adolfsson ◽  
Yanan Xu ◽  
Haiqiu Fang ◽  
Minna Hakkarainen ◽  
...  

2021 ◽  
Author(s):  
R. L. Kalyani ◽  
Sarath Chandra Veerla ◽  
Venkata Ramana Murthy Kolapalli ◽  
Vijay Kumar P.P.N. ◽  
V. Swamy P. ◽  
...  

In the present study, Annona squamosa leaf extract was used as a reducing and capping agent for the facile green synthesis of nano-copper oxide particles. The optical, structural and morphological...


2021 ◽  
Author(s):  
Sergey V Dorozhkin

Amorphous calcium phosphates (ACPs) represent a metastable amorphous state of other calcium orthophosphates (abbreviated as CaPO4) possessing variable compositional but rather identical glass-like physical properties, in which there are neither...


2007 ◽  
Vol 12 (4) ◽  
pp. 574-582 ◽  
Author(s):  
Nelson Heriberto de Almeida Camargo ◽  
O. J. Bellini ◽  
Enori Gemelli ◽  
M. Tomiyama

Nanostructured materials have been largely studied in the last few years because they have a great potential to applications in different fields like physics, chemistry, biology, mechanic and medicine. Synthesis and characterization of nanostructured materials is a subject of great interest involving science, market, politicians, government and society. The nanostructured materials are in demand in biomedical area, mainly the bioceramics composed of calcium phosphates (Ca/P), which have an excellent biocompatibility and mineralogical characteristics similar to those of bones. The aim of this work was to optimize the method of powder synthesis of nanostructured calcium phosphate and of nanocomposites composed of calcium phosphate//SiO2n, containing 5, 10 and 15% (in volume) of nanometric silica (SiO2n). The results are expressed according to the method of synthesis, mineralogical and morphological characterization, and thermal behavior for the different compositions of the nanostructured powder synthesized.


2021 ◽  
Vol 64 (2) ◽  
pp. 202-210
Author(s):  
Muhammad Isa Khan ◽  
Aliza Zahoor ◽  
Tahir Iqbal ◽  
Abdul Majid ◽  
Mohsin Ijaz

  Recently, different researchers find nanoparticles as an auspicious alternative to antibacterial agents due to their antibacterial behaviour. This antibacterial behaviour contributes in many biomedical applications including; tissue engineering, drug and gene delivery and, imaging. Furthermore, iron oxide nanoparticle gains much importance due to their magnetic characteristics and wide range of application. Iron oxide nanoparticle (IONPs) have exhibits great potential against bacteria. During the past decade, various routes were developed to synthesize iron oxide nanoparticle with suitable size and composition. This article reviews the recent iron oxide nanoparticle obtained by green synthesis with a focus on their response to antibacterial activities. The iron nanoparticles synthesized by green synthesis method has accumulated a vital attention over the last couple of years due to their unique characteristic as it makes sure environmental friendly, nontoxic and safe reagents.


2020 ◽  
pp. 91-108
Author(s):  
Ana M. Herrera-González ◽  
M. Caldera-Villalobos ◽  
J. García-Serrano ◽  
M. C. Reyes-Ángeles

Sign in / Sign up

Export Citation Format

Share Document