One-step formation of a double Pickering emulsion via modulation of the oil phase composition

2018 ◽  
Vol 9 (8) ◽  
pp. 4508-4517 ◽  
Author(s):  
Qijun Ruan ◽  
Lihua Zeng ◽  
Jiaoyan Ren ◽  
Xiaoquan Yang

A facile one-step emulsification strategy was developed to generate a food-grade W/O/W double Pickering emulsion by using corn-peptide-functionalized calcium phosphate particles (CP-CaP) as emulsifier.

2017 ◽  
Vol 70 ◽  
pp. 219-228 ◽  
Author(s):  
Qijun Ruan ◽  
Jian Guo ◽  
Zhili Wan ◽  
Jiaoyan Ren ◽  
Xiaoquan Yang

2013 ◽  
Vol 25 (18) ◽  
pp. 3667-3674 ◽  
Author(s):  
Babak Mostaghaci ◽  
Brigitta Loretz ◽  
Robert Haberkorn ◽  
Guido Kickelbick ◽  
Claus-Michael Lehr

2014 ◽  
Vol 1 (3) ◽  
pp. 360-364 ◽  
Author(s):  
Niek Hijnen ◽  
Paul S. Clegg

Removing the continuous phase of a Pickering emulsion of partially miscible liquids by selective evaporation provides a one-step route to assembling colloidal particles into a cellular network.


2007 ◽  
Vol 22 (6) ◽  
pp. 1593-1600 ◽  
Author(s):  
Sahil Jalota ◽  
Sutapa Bhaduri ◽  
Sarit B. Bhaduri ◽  
A. Cuneyt Tas

Biomimetic coating of titanium and related alloys with carbonated apatitic calcium phosphate is an important area of research in implantology. While this paper specifically refers to coating Ti6Al4V, the results are valid with other related alloys as well. One step in the protocol involves an intermediate alkali treatment of Ti6Al4V to form a sodium titanate layer on the alloy surface. This pretreatment enhances the formation of the coating from simulated body fluid (SBF) solutions. Many papers in the biomimetic coating literature demonstrate the presence of cracks in coatings, irrespective of the SBF compositions and placement of the substrates. The presence of cracks may result in degradation and delamination of coatings. To the best of our knowledge, this issue remains unresolved. Therefore, the aim of this study was: (i) to examine and understand the reasons for cracking and (ii) based on the results, to develop a protocol for producing crack-free apatitic calcium phosphate coatings on Ti6Al4V substrates. In this study, the authors focused their attention on the alkali treatment procedure and the final drying step. It is hypothesized that these two steps of the process affect the crack formation the most. In the first case, the surfaces of alkali-treated substrates were examined with/without water-soaking treatment before immersing in SBF. This water treatment modifies the sodium titanate surface layer. In the second case, two different drying techniques (after soaking in SBF) were used. In one procedure, the coated substrates were dried rapidly, and in the other they were dried slowly. It was observed that the water treatment, irrespective of the drying method, provides a surface, which on subsequent soaking in SBF forms a crack-free apatitic calcium phosphate coating. Based on these results, the authors suggest a protocol incorporating a water-soaking treatment after the alkali treatment and prior to the SBF soaking treatment to obtain crack-free coatings.


2013 ◽  
Vol 785-786 ◽  
pp. 872-876
Author(s):  
Yong Huang ◽  
Shu Guang Han ◽  
Ya Jing Yan ◽  
Xiao Feng Pang

This work elucidated corrosion resistance of the electrodeposited MgO/calcium phosphate (Ca-P/MgO) films on titanium (Ti). The microstructure, phase composition, and corrosion resistance of the films were studied. Results revealed that The Ca-P/MgO composite coatings were rough and inhomogeneous, the upper layer was floral-like crystals or flakes agglomerates morphology, and the lower layer was needle-like crystals which were mutually cross linked. The coating was very dense, and the content of Mg was about 0.3 wt%. Potentiodynamic polarization test manifested that the Ca-P/MgO-coated surface exhibited superior corrosion resistance than the bare titanium.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1071 ◽  
Author(s):  
Yu-Jin Cho ◽  
Dong-Min Kim ◽  
In-Ho Song ◽  
Ju-Young Choi ◽  
Seung-Won Jin ◽  
...  

A pyromellitic dianhydride (PMDA) and 4,4′-oxydianiline (ODA)-based oligoimide (PMDA-ODA) was synthesized by a one-step procedure using water as a solvent. The PMDA-ODA particles showed excellent partial wetting properties and were stably dispersed in both water and oil phases. A stable dispersion was not obtained with comparison PMDA-ODA particles that were synthesized by a conventional two-step method using an organic solvent. Both oil-in-water and water-in-oil Pickering emulsions were prepared using the oligoimide particles synthesized in water, and the size of the emulsion droplet was controlled based on the oligoimide particle concentration. The oligoimide particles were tested to prepare Pickering emulsions using various kinds of oils. The oil-in-water Pickering emulsions were successfully applied to prepare microcapsules of the emulsion droplets. Our new Pickering emulsion stabilizer has the advantages of easy synthesis, no need for surface modification, and the capability of stabilizing both oil-in-water and water-in-oil emulsions.


2020 ◽  
Vol 10 (4) ◽  
pp. 6007-6014

Scanning electron microscope allowed us to get screens of different cheese microstructure that form a base for further investigation of a cheese structure state before and after the process of drying and for their comparison. Any cheese structure presents a matrix of proteins penetrated with moisture capillaries; fat globules are located both inside the protein matrix and on a cheese surface. Shape of capillaries is either round or oval. Capillaries vary in size and number that has an impact on the cheese pattern which is described by hole and void shapes and order. Electron microscopy was also used for detecting deposition of calcium phosphate. Particles of calcium phosphate changed in size, before drying they were 10–12 µm, and after drying they reached 20–30 µ. These particles concentrate in the dried cheese and agglomerate into larger particles. The most concentrated calcium phosphate proportion was found in pores and micro-voids of the dry cheese. As for mature cheese samples, calcium lactate was established as well.


Sign in / Sign up

Export Citation Format

Share Document