One-pot selective conversion of C5-furan into 1,4-pentanediol over bulk Ni–Sn alloy catalysts in an ethanol/H2O solvent mixture

2019 ◽  
Vol 21 (9) ◽  
pp. 2307-2315 ◽  
Author(s):  
Rodiansono Rodiansono ◽  
Maria Dewi Astuti ◽  
Takayoshi Hara ◽  
Nobuyuki Ichikuni ◽  
Shogo Shimazu

The synergistic actions between an inexpensive bulk Ni–Sn(1.5) alloy, hydrogen gas, and an ethanol/H2O solvent mixture selectively assisted the one pot conversion of C5-furan compounds to 1,4-pentanediol with outstanding yields up to 92%.

RSC Advances ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 241-250
Author(s):  
Rodiansono ◽  
Maria Dewi Astuti ◽  
Kamilia Mustikasari ◽  
Sadang Husain ◽  
Fathur Razi Ansyah ◽  
...  

The RANEY® Ni–Sn(x) alloy catalysed the one-pot conversion of biomass-derived furfural and levulinic acid to allow remarkable yield of 1,4-pentanediol (up to 90%) under the mild reaction conditions.


Author(s):  
Rodiansono Rodiansono ◽  
Astuti Maria Dewi ◽  
Sadang Husain ◽  
Agung Nugroho ◽  
Sutomo Sutomo

The selective conversion of 2-methylfuran (2-MeF) to 1,4-pentanediol (1,4-PeD) over bimetallic nickel-tin alloy catalysts in the ethanol/H2O solvent mixture was studied. By using bulk Ni-Sn(x); x = 3.0 and 1.5 catalysts, a maximum yield of 1,4-PeD (49%) was obtained at 94% conversion of 2-MeF. The dispersion of Ni-Sn(x) on the aluminium hydroxide (AlOH) or g-Al2O3 supports allowed to an outstanding yield of 1,4-PeD (up to 64%) at 433 K, 3.0 MPa of H2 within 12 h. Ni-Sn(3.0)/AlOH catalyst was found to be reusable and the treatment of the recovered Ni-Sn(3.0)/AlOH catalyst with H2 at 673 K for 1 h restored the catalyst’s original activity and selectivity. Copyright © 2019 BCREC Group. All rights reserved 


2020 ◽  
Vol 98 (10) ◽  
pp. 630-634
Author(s):  
Lia Zaharani ◽  
Nader Ghaffari Khaligh ◽  
Taraneh Mihankhah ◽  
Mohd Rafie Johan ◽  
Nor Aliya Hamizi

This work presents a new catalytic application of 4,4′-trimethylenedipiperidine for the efficient synthesis of a series of dihydro-[1,2,4] triazolo[1,5-a]pyrimidines. According to the principles of green chemistry, the reaction was performed (a) in a solvent mixture comprised of water and ethanol (1:1 v/v) at reflux temperature and (b) solvent-free grinding in a mortar by a pestle. The organocatalyst could be reused up to 10 runs, and no reduction of catalytic activity was detected. A variety of substituted dihydro-[1,2,4] triazolo[1,5-a]pyrimidines were obtained in good to excellent yields under eco-friendly conditions. 4,4′-Trimethylenedipiperidine is commercially available and easy to handle, and it also shows high thermal stability and good solubility in water. This work revealed that this organocatalyst, a hydrogen bond donor to active carbonyl groups and simultaneously a Lewis base through the nitrogen atom of second piperidine moiety, could play a vital role in the promotion of the one-pot multi-component reactions. The main merits of the current methodology include short reaction time, wide substrate scope, use of a metal-free catalyst and green solvents, and simple work-up process. Furthermore, this organocatalyst can be an alternative to piperidine for organic transformations.


2017 ◽  
Vol 46 (43) ◽  
pp. 15059-15069 ◽  
Author(s):  
Lorenzo Biancalana ◽  
Giada Tuci ◽  
Fabio Piccinelli ◽  
Fabio Marchetti ◽  
Marco Bortoluzzi ◽  
...  

The unusual, one pot conversion ofl-proline to pyrroline-2-carboxylate, using simple V(v) species (NH4VO3or V2O5) as oxidants in basic water medium, is described. No reaction was observed with primary and tertiary α-amino acids.


2018 ◽  
Author(s):  
Huong T. D. Nguyen ◽  
Y B. N. Tran ◽  
Hung N. Nguyen ◽  
Tranh C. Nguyen ◽  
Felipe Gándara ◽  
...  

<p>Three novel lanthanide metal˗organic frameworks (Ln-MOFs), namely MOF-590, -591, and -592 were constructed from a naphthalene diimide tetracarboxylic acid. Gas adsorption measurements of MOF-591 and -592 revealed good adsorption of CO<sub>2</sub> (low pressure, at room temperature) and moderate CO<sub>2</sub> selectivity over N<sub>2</sub> and CH<sub>4</sub>. Accordingly, breakthrough measurements were performed on a representative MOF-592, in which the separation of CO<sub>2</sub> from binary mixture containing N<sub>2</sub> and CO<sub>2</sub> was demonstrated without any loss in performance over three consecutive cycles. Moreover, MOF-590, MOF-591, and MOF-592 exhibited catalytic activity in the one-pot synthesis of styrene carbonate from styrene and CO<sub>2</sub> under mild conditions (1 atm CO<sub>2</sub>, 80 °C, and solvent-free). Among the new materials, MOF-590 revealed a remarkable efficiency with exceptional conversion (96%), selectivity (95%), and yield (91%). </p><br>


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


2020 ◽  
Vol 24 (20) ◽  
pp. 2341-2355
Author(s):  
Thaipparambil Aneeja ◽  
Sankaran Radhika ◽  
Mohan Neetha ◽  
Gopinathan Anilkumar

One-pot syntheses are a simple, efficient and easy methodology, which are widely used for the synthesis of organic compounds. Imidazoline is a valuable heterocyclic moiety used as a synthetic intermediate, chiral auxiliary, chiral catalyst and a ligand for asymmetric catalysis. Imidazole is a fundamental unit of biomolecules that can be easily prepared from imidazolines. The one-pot method is an impressive approach to synthesize organic compounds as it minimizes the reaction time, separation procedures, and ecological impact. Many significant one-pot methods such as N-bromosuccinimide mediated reaction, ring-opening of tetrahydrofuran, triflic anhydrate mediated reaction, etc. were reported for imidazoline synthesis. This review describes an overview of the one-pot synthesis of imidazolines and covers literature up to 2020.


2018 ◽  
Vol 21 (4) ◽  
pp. 302-311
Author(s):  
Younes Ghalandarzehi ◽  
Mehdi Shahraki ◽  
Sayyed M. Habibi-Khorassani

Aim & Scope: The synthesis of highly substituted piperidine from the one-pot reaction between aromatic aldehydes, anilines and β-ketoesters in the presence of tartaric acid as a catalyst has been investigated in both methanol and ethanol media at ambient temperature. Different conditions of temperature and solvent were employed for calculating the thermodynamic parameters and obtaining an experimental approach to the kinetics and mechanism. Experiments were carried out under different temperature and solvent conditions. Material and Methods: Products were characterized by comparison of physical data with authentic samples and spectroscopic data (IR and NMR). Rate constants are presented as an average of several kinetic runs (at least 6-10) and are reproducible within ± 3%. The overall rate of reaction is followed by monitoring the absorbance changes of the products versus time on a Varian (Model Cary Bio- 300) UV-vis spectrophotometer with a 10 mm light-path cell. Results: The best result was achieved in the presence of 0.075 g (0.1 M) of catalyst and 5 mL methanol at ambient temperature. When the reaction was carried out under solvent-free conditions, the product was obtained in a moderate yield (25%). Methanol was optimized as a desirable solvent in the synthesis of piperidine, nevertheless, ethanol in a kinetic investigation had none effect on the enhancement of the reaction rate than methanol. Based on the spectral data, the overall order of the reaction followed the second order kinetics. The results showed that the first step of the reaction mechanism is a rate determining step. Conclusion: The use of tartaric acid has many advantages such as mild reaction conditions, simple and readily available precursors and inexpensive catalyst. The proposed mechanism was confirmed by experimental results and a steady state approximation.


2015 ◽  
Vol 12 (3) ◽  
pp. 197-204 ◽  
Author(s):  
Prabhakar Rairala ◽  
Bandi Yadagiri ◽  
Rajashaker Bantu ◽  
Vijayacharan Guguloth ◽  
Lingaiah Nagarapu

Sign in / Sign up

Export Citation Format

Share Document