ISE-potentiometric sensor for the determination of zolmitriptan: applications in plasma, pharmaceutical formulation and in vitro release profile

2018 ◽  
Vol 42 (18) ◽  
pp. 15263-15269 ◽  
Author(s):  
Ahmed S. Saad ◽  
Mohamed R. El-Ghobashy ◽  
Nada S. Ayish ◽  
Badr A. El-Zeany

Six different sensors were fabricated and compared for the potentiometric determination of a widely used serotonin receptor agonist zolmitriptan (ZT), which is mainly used for the treatment of acute migraine attacks.

Author(s):  
SHOLICHAH ROHMANI ◽  
ADI YUGATAMA ◽  
ISTI WIJAYANTI ◽  
DIAN EKA ERMAWATI ◽  
ANIF NUR ARTANTI ◽  
...  

Objective: This research was conducted to examine the characteristics of the eugenol gel preparation in the Hydroxypropyl Methylcellulose (HPMC) gel base and to determine the profile of the release of eugenol from the HPMC gel base. Methods: Eugenol was made into gel preparations using HPMC base with concentrations of 3%, 5% and 7%. The evaluation included the tests of product characteristic and eugenol release. The product characteristic test included organoleptic examination (texture, color, and odor) and tests of spreadability, adhesion, and pH. The release test was carried out using cell diffusion and cellophane membranes. Results: All formulas met the pH requirements of topical products that were safe to use. The spreadability test is between 2.97-6.27 cm, adhesion test of products>4 s. The percentage of determination of eugenol content in the gel formula (F1 105.81%), (F2 93.28%) and (F3 98.87%). The cumulative amount of eugenol was F1 (2.563 mg/cm2), F2 (2.224 mg/cm2), and F3 (1.895 mg/cm2). Conclusion: The variation of HPMC as a gel base has effects on the adhesion, spreadability, and the eugenol gel release profile, where the greater the HPMC concentration, the smaller the spreadability, the greater the adhesion, and the lower the eugenol release profile. Based on the data obtained, the Formula 1 had a better release rate.


2019 ◽  
Vol 9 (1) ◽  
pp. 76-85 ◽  
Author(s):  
R. Nithya ◽  
K. Siram ◽  
R. Hariprasad ◽  
H. Rahman

Background: Paclitaxel (PTX) is a potent anticancer drug which is highly effective against several cancers. Solid lipid nanoparticles (SLNs) loaded with anticancer drugs can enhance its toxicity against tumor cells at low concentrations. Objective: To develop and characterize SLNs of PTX (PSLN) to enhance its toxicity against cancerous cells. Method: The solubility of PTX was screened in various lipids. Solid lipid nanoparticles of PTX (PSLN) were developed by hot homogenization method using Cutina HR and Gelucire 44/14 as lipid carriers and Solutol HS 15 as a surfactant. PSLNs were characterized for size, morphology, zeta potential, entrapment efficiency, physical state of the drug and in vitro release profile in 7.4 pH phosphate buffer saline (PBS). The ability of PTX to enhance toxicity towards cancerous cells was tested by performing cytoxicity assay in MCF7 cell line. Results: Solubility studies of PTX in lipids indicated better solubility when Cutina HR and Gelucire 44/14 were used. PSLNs were found to possess a neutral zeta potential with a size range of 155.4 ± 10.7 nm to 641.9 ± 4.2 nm. In vitro release studies showed a sustained release profile for PSLN over a period of 48 hours. SLNs loaded with PTX were found to be more toxic in killing MCF7 cells at a lower concentration than the free PTX.


2020 ◽  
Vol 306 ◽  
pp. 112861 ◽  
Author(s):  
Juliana Ferreira de Souza ◽  
Katiusca da Silva Pontes ◽  
Thais Francine Ribeiro Alves ◽  
Cecilia Torqueti de Barros ◽  
Venancio Alves Amaral ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Rashmin B. Patel ◽  
Mrunali R. Patel ◽  
Kashyap K. Bhatt ◽  
Bharat G. Patel

A new, simple, and rapid high-performance thin-layer chromatographic method was developed and validated for quantitative determination of Carbamazepine. Carbamazepine was chromatographed on silica gel 60 F254 TLC plate using ethyl acetate-toluene-methanol (5.0 + 4.0 + 1.0 v/v/v) as mobile phase. Carbamazepine was quantified by densitometric analysis at 285 nm. The method was found to give compact spots for the drug (Rf=0.47 ± 0.01). The linear regression analysis data for the calibration plots showed good linear relationship with r2=.9995 in the concentration range 100–600 ng/spot. The method was validated for precision, recovery, repeatability, and robustness as per the International Conference on Harmonization guidelines. The minimum detectable amount was found to be 16.7 ng/spot, whereas the limit of quantitation was found to be 50.44 ng/spot. Statistical analysis of the data showed that the method is precise, accurate, reproducible, and selective for the analysis of Carbamazepine. The method was successfully employed for the estimation of equilibrium solubility, quantification of Carbamazepine as a bulk drug, in commercially available preparation, and in-house developed mucoadhesive microemulsion formulations and solution.


Pharmacia ◽  
2020 ◽  
Vol 67 (2) ◽  
pp. 49-54
Author(s):  
Krassimira Yoncheva ◽  
Nadia Hristova-Avakumova ◽  
Vera Hadjimitova ◽  
Trayko Traykov ◽  
Petar Petrov

The study was focused on the evaluation of two copolymers as micellar carriers for kaempferol delivery. The copolymers comprised identical hydrophilic blocks of poly(2-(dimethylamino)ethyl methacrylate and different hydrophobic blocks of either poly(ε-caprolactone) (PDMAEMA9-b-PCL70-b-PDMAEMA9) or poly(propylene oxide) (PDMAEMA13-b-PPO69-b-PDMAEMA13). The calculation of Flory-Huggins parameters and determination of encapsulation efficiency showed that PDMAEMA-b-PCL-b-PDMAEMA copolymer possessed higher capacity for kaempferol loading. The diameter of the micelles before and after lyophilization was not changed, suggesting that the micelles could be lyophilized and redispersed before administration. The in vitro release of kaempferol from PDMAEMA-b-PPO-b-PDMAEMA micelles was faster than the release from PDMAEMA-b-PCL-b-PDMAEMA micelles, probably due to the higher affinity of kaempferol to this copolymer. Further, the higher affinity resulted in a retention of antioxidant activity of kaempferol in the presence of DPPH and KO2 radicals. Thus, PDMAEMA-PCL-PDMAEMA was considered more appropriate carrier because of the higher encapsulation efficiency and preservation of antioxidant activity of the drug.


Sign in / Sign up

Export Citation Format

Share Document