Nucleation of protein crystals – a nanoscopic perspective

Nanoscale ◽  
2018 ◽  
Vol 10 (26) ◽  
pp. 12256-12267 ◽  
Author(s):  
Mike Sleutel ◽  
Alexander E. S. Van Driessche

A historical overview and state-of-the-art analysis of the mechanism of protein crystal nucleation from an experimentalist's perspective.

2003 ◽  
Vol 36 (5) ◽  
pp. 1295-1296 ◽  
Author(s):  
Peter Nollert

The use of lipidic cubic phases as crystal nucleation and growth matrices is becoming popular and has yielded crystals of soluble and membrane proteins. So far, all of the membrane proteins crystallized by this method have been colored. This feature has facilitated the detection of the often encountered microcrystals in initial screening rounds. Indeed, small colorless protein crystals have poor optical contrast as a result of the small differences in refractive index of the protein crystal and the surrounding lipidic cubic phase. While a perfect preparation of a lipidic cubic phase is transparent and optically isotropic, in a crystallization setup it frequently disguises crystals due to cracks, inclusions, surface distortions and phase boundaries. Here, several specialized microscopic techniques and illumination conditions are compared and it is found that sufficient contrast is generated by cross polarization microscopy and by Hoffman modulation contrast microscopy for the detection of colorless protein crystals.


2016 ◽  
Vol 186 ◽  
pp. 187-197 ◽  
Author(s):  
Praveen K. Bommineni ◽  
Sudeep N. Punnathanam

The synthesis of high quality protein crystals is essential for determining their structure. Hence the development of strategies to facilitate the nucleation of protein crystals is of prime importance. Recently, Ghatak and Ghatak [Langmuir 2013, 29, 4373] reported heterogeneous nucleation of protein crystals on nano-wrinkled surfaces. Through a series of experiments on different proteins, they were able to obtain high quality protein crystals even at low protein concentrations and sometimes without the addition of a precipitant. In this study, the mechanism of protein crystal nucleation on nano-wrinkled surfaces is studied through Monte Carlo simulations. The wrinkled surface is modeled by a sinusoidal surface. Free-energy barriers for heterogeneous crystal nucleation on flat and wrinkled surfaces are computed and compared. The study reveals that the enhancement of nucleation is closely related to the two step nucleation process seen during protein crystallization. There is an enhancement of protein concentration near the trough of the sinusoidal surface which aids in nucleation. However, the high curvature at the trough acts as a deterrent to crystal nucleus formation. Hence, significant lowering of the free-energy barrier is seen only if the increase in the protein concentration at the trough is very high.


Author(s):  
Dominique Maes ◽  
Maria A. Vorontsova ◽  
Marco A. C. Potenza ◽  
Tiziano Sanvito ◽  
Mike Sleutel ◽  
...  

Protein-dense liquid clusters are regions of high protein concentration that have been observed in solutions of several proteins. The typical cluster size varies from several tens to several hundreds of nanometres and their volume fraction remains below 10−3of the solution. According to the two-step mechanism of nucleation, the protein-rich clusters serve as locations for and precursors to the nucleation of protein crystals. While the two-step mechanism explained several unusual features of protein crystal nucleation kinetics, a direct observation of its validity for protein crystals has been lacking. Here, two independent observations of crystal nucleation with the proteins lysozyme and glucose isomerase are discussed. Firstly, the evolutions of the protein-rich clusters and nucleating crystals were characterized simultaneously by dynamic light scattering (DLS) and confocal depolarized dynamic light scattering (cDDLS), respectively. It is demonstrated that protein crystals appear following a significant delay after cluster formation. The cDDLS correlation functions follow a Gaussian decay, indicative of nondiffusive motion. A possible explanation is that the crystals are contained inside large clusters and are driven by the elasticity of the cluster surface. Secondly, depolarized oblique illumination dark-field microscopy reveals the evolution from liquid clusters without crystals to newly nucleated crystals contained in the clusters to grown crystals freely diffusing in the solution. Collectively, the observations indicate that the protein-rich clusters in lysozyme and glucose isomerase solutions are locations for crystal nucleation.


2021 ◽  
Author(s):  
Christo N. Nanev ◽  
Emmanuel Saridakis ◽  
Lata Govada ◽  
Naomi E. Chayen

Abstract Well-diffracting protein crystals are indispensable for X-ray diffraction analysis, which is still the most powerful method for structure-function studies of biomolecules. A promising approach to growing such crystals is by using porous nucleation-inducing materials. However, while protein crystal nucleation in pores has been thoroughly considered, little attention has been paid to the subsequent growth of the crystals. Although the nucleation stage is decisive, it is the subsequent growth of the crystals outside the pore that determines their diffraction quality. The molecular-scale mechanism of growth of protein crystals in and outside pores is here considered theoretically. Due to the metastable conditions, the crystals that emerge from the pores grow slowly, which is a prerequisite for better diffraction. This expectation has been corroborated by experiments carried out with several types of porous material, such as Bioglass (“Naomi’s Nucleant”), Buckypaper, porous gold and porous silicon. Protein crystals grown with the aid of Bioglass and Buckypaper yielded significantly better diffraction quality compared with crystals grown conventionally. In all cases, visually superior crystals are usually obtained. We furthermore conclude that heterogeneous nucleation of a crystal outside the pore is an exceptional case. Rather, the protein crystals nucleating inside the pores continue growing outside them.


2012 ◽  
Vol 22 (3) ◽  
pp. 219-232 ◽  
Author(s):  
Luca Belmonte ◽  
Eugenia Pechkova ◽  
Shailesh Tripathi ◽  
Dora Scudieri ◽  
Claudio Nicolini

2021 ◽  
pp. 160215
Author(s):  
Sivakumar Musuvadhi Babulal ◽  
Krishnan Venkatesh ◽  
Shen-Ming Chen ◽  
Sayee Kannan Ramaraj ◽  
Chun-Chen Yang

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4312
Author(s):  
Marzena Smol

Circular economy (CE) is an economic model, in which raw materials remain in circulation as long as possible and the generation of waste is minimized. In the fertilizer sector, waste rich in nutrients should be directed to agriculture purposes. This paper presents an analysis of recommended directions for the use of nutrient-rich waste in fertilizer sector and an evaluation of possible interest in this kind of fertilizer by a selected group of end-users (nurseries). The scope of research includes the state-of-the-art analysis on circular aspects and recommended directions in the CE implementation in the fertilizer sector (with focus on sewage-based waste), and survey analysis on the potential interest of nurseries in the use of waste-based fertilizers in Poland. There are more and more recommendations for the use of waste for agriculture purposes at European and national levels. The waste-based products have to meet certain requirements in order to put such products on the marker. Nurserymen are interested in contributing to the process of transformation towards the CE model in Poland; however, they are not fully convinced due to a lack of experience in the use of waste-based products and a lack of social acceptance and health risk in this regard. Further actions to build the social acceptance of waste-based fertilizers, and the education of end-users themselves in their application is required.


2013 ◽  
Vol 20 (4) ◽  
pp. 1049-1056 ◽  
Author(s):  
Masatoshi Maeki ◽  
Yuki Teshima ◽  
Saori Yoshizuka ◽  
Hiroshi Yamaguchi ◽  
Kenichi Yamashita ◽  
...  

Author(s):  
Marcos Sanchez Sanchez ◽  
John Iliff

<p>This paper describes the key elements from early planning to completion of a new bridge over the River Barrow which is part of the New Ross bypass in the south of Ireland. The structure has a total length of 887m, with a span arrangement of 36-45-95-230-230-95-70-50-36m. The two central twin spans are the longest of its kind in the world (extrados with a full concrete deck). The bridge carries a dual carriageway with a cable arrangement consisting of a single plane of cables located in the central axis of the deck. The design and construction focused in providing a structure with long term durability, resilience, and a robust approach to design scenarios using the Eurocodes and state of the art analysis techniques, including extreme events such as fire and ship impact<i>.</i></p>


2017 ◽  
pp. 1-25 ◽  
Author(s):  
João Carlos Resende ◽  
Ricardo Chaves

Sign in / Sign up

Export Citation Format

Share Document