Preparation of gas phase naked silver cluster cations outside a mass spectrometer from ligand protected clusters in solution

Nanoscale ◽  
2018 ◽  
Vol 10 (33) ◽  
pp. 15714-15722 ◽  
Author(s):  
Madhuri Jash ◽  
Arthur C. Reber ◽  
Atanu Ghosh ◽  
Depanjan Sarkar ◽  
Mohammad Bodiuzzaman ◽  
...  

Gas phase naked silver clusters were prepared outside the mass spectrometer by thermal desorption of ligands starting from ligand protected clusters.

1973 ◽  
Vol 95 (23) ◽  
pp. 7592-7599 ◽  
Author(s):  
R. Atkinson ◽  
B. J. Finlayson ◽  
J. N. Pitts
Keyword(s):  

1981 ◽  
Vol 59 (15) ◽  
pp. 2412-2416 ◽  
Author(s):  
John A. Stone ◽  
Margaret S. Lin ◽  
Jeffrey Varah

The reactivity of the dimethylchloronium ion with a series of aromatic hydrocarbons has been studied in a high pressure mass spectrometer ion source using the technique of reactant ion monitoring. Benzene is unreactive but all others, from toluene to mesitylene, react by CH3+ transfer to yield σ-bonded complexes. The relative rate of reaction increases with increasing exothermicity in line with current theories of nucleophilic displacement reactions.


2021 ◽  
Author(s):  
Xiaoxiao Li ◽  
Yuyang Li ◽  
Michael Lawler ◽  
Jiming Hao ◽  
James Smith ◽  
...  

<p>Ultrafine particles (UFPs) dominate the particle number population in the urban atmosphere and revealing their chemical composition is important. The thermal desorption chemical ionization mass spectrometer (TDCIMS) can semi-continuously measure UFP composition at the molecular level. We modified a TDCIMS and deployed it in urban Beijing. Radioactive materials in the TDCIMS for aerosol charging and chemical ionization were replaced by soft X-ray ionizers so that it can be operated in countries with tight regulations on radioactive materials. Protonated N-methyl-2-pyrrolidone ions were used as the positive reagent ion, which selectively detects ammonia and low-molecular weight-aliphatic amines and amides vaporized from the particle phase. With superoxide as the negative reagent ion, a wide range of inorganic and organic compounds were observed, including nitrate, sulfate, aliphatic acids with carbon numbers up to 18, and highly oxygenated CHO, CHON, and CHOS compounds. The latter two can be attributed to parent ions or the decomposition products of organonitrates and organosulfates/organosulfonates, respectively. Components from both primary emissions and secondary formation of UFPs were identified. Compared to the UFPs measured at forest and marine sites, those in urban Beijing contain more nitrogen-containing and sulfur-containing compounds. These observations illustrate unique features of the UFPs in this polluted urban environment and provide insights into their origins.</p>


2016 ◽  
Vol 8 (36) ◽  
pp. 6607-6615 ◽  
Author(s):  
Stamatios Giannoukos ◽  
Boris Brkić ◽  
Stephen Taylor

A compact portable membrane inlet mass spectrometer (MIMS) has been used for the first time to detect and monitor, both qualitatively and quantitatively, volatile chlorinated hydrocarbons in the gaseous phase.


2004 ◽  
Vol 18 (2) ◽  
pp. 387-396 ◽  
Author(s):  
Jill R. Scott ◽  
Jason E. Ham ◽  
Bill Durham ◽  
Paul L. Tremblay

Metal polypyridines are excellent candidates for gas-phase optical experiments where their intrinsic properties can be studied without complications due to the presence of solvent. The fluorescence lifetimes of [Ru(bpy)3]1+trapped in an optical detection cell within a Fourier transform mass spectrometer were obtained using matrix-assisted laser desorption/ionization to generate the ions with either 2,5-dihydroxybenzoic acid (DHB) or sinapinic acid (SA) as matrix. All transients acquired, whether using DHB or SA for ion generation, were best described as approximately exponential decays. The rate constant for transients derived using DHB as matrix was 4×107s−1, while the rate constant using SA was 1×107s−1. Some suggestions of multiple exponential decay were evident although limited by the quality of the signals. Photodissociation experiments revealed that [Ru(bpy)3]1+generated using DHB can decompose to [Ru(bpy)2]1+, whereas ions generated using SA showed no decomposition. Comparison of the mass spectra with the fluorescence lifetimes illustrates the promise of incorporating optical detection with trapped ion mass spectrometry techniques.


1985 ◽  
Vol 89 (23) ◽  
pp. 4905-4908 ◽  
Author(s):  
James L. Gole ◽  
R. Woodward ◽  
J. S. Hayden ◽  
David A. Dixon

2020 ◽  
Vol 20 (16) ◽  
pp. 9783-9803
Author(s):  
Archit Mehra ◽  
Yuwei Wang ◽  
Jordan E. Krechmer ◽  
Andrew Lambe ◽  
Francesca Majluf ◽  
...  

Abstract. Aromatic volatile organic compounds (VOCs) are key anthropogenic pollutants emitted to the atmosphere and are important for both ozone and secondary organic aerosol (SOA) formation in urban areas. Recent studies have indicated that aromatic hydrocarbons may follow previously unknown oxidation chemistry pathways, including autoxidation that can lead to the formation of highly oxidised products. In this study we evaluate the gas- and particle-phase ions measured by online mass spectrometry during the hydroxyl radical oxidation of substituted C9-aromatic isomers (1,3,5-trimethylbenzene, 1,2,4-trimethylbenzene, propylbenzene and isopropylbenzene) and a substituted polyaromatic hydrocarbon (1-methylnaphthalene) under low- and medium-NOx conditions. A time-of-flight chemical ionisation mass spectrometer (ToF-CIMS) with iodide–anion ionisation was used with a filter inlet for gases and aerosols (FIGAERO) for the detection of products in the particle phase, while a Vocus proton-transfer-reaction mass spectrometer (Vocus-PTR-MS) was used for the detection of products in the gas phase. The signal of product ions observed in the mass spectra were compared for the different precursors and experimental conditions. The majority of mass spectral product signal in both the gas and particle phases comes from ions which are common to all precursors, though signal distributions are distinct for different VOCs. Gas- and particle-phase composition are distinct from one another. Ions corresponding to products contained in the near-explicit gas phase Master Chemical Mechanism (MCM version 3.3.1) are utilised as a benchmark of current scientific understanding, and a comparison of these with observations shows that the MCM is missing a range of highly oxidised products from its mechanism. In the particle phase, the bulk of the product signal from all precursors comes from ring scission ions, a large proportion of which are more oxidised than previously reported and have undergone further oxidation to form highly oxygenated organic molecules (HOMs). Under the perturbation of OH oxidation with increased NOx, the contribution of HOM-ion signals to the particle-phase signal remains elevated for more substituted aromatic precursors. Up to 43 % of product signal comes from ring-retaining ions including HOMs; this is most important for the more substituted aromatics. Unique products are a minor component in these systems, and many of the dominant ions have ion formulae concurrent with other systems, highlighting the challenges in utilising marker ions for SOA.


2010 ◽  
Vol 10 (6) ◽  
pp. 13969-14011 ◽  
Author(s):  
R. Holzinger ◽  
A. Kasper-Giebl ◽  
M. Staudinger ◽  
G. Schauer ◽  
T. Röckmann

Abstract. For the first time a high mass resolution thermal desorption proton transfer reaction mass spectrometer (hr-TD-PTR-MS) was deployed in the field to analyze the composition of the organic fraction of aerosols. We report on measurements from the remote Mt. Sonnblick observatory in the Austrian alps (3108 m a.s.l.) during a 7 week period in summer 2009. A total of 638 mass peaks in the range 18–392 Da were detected and quantified in aerosols. An empirical formula was tentatively attributed to 464 of these compounds by custom-made data analysis routines which consider compounds containing C, H, O, N, and S atoms. Most of the other (unidentified) compounds must contain other elements – most likely halogenated compounds. The mean total concentration of all detected compounds was 1.1 μg m−3. Oxygenated hydrocarbons constitute the bulk of the aerosol mass (75%) followed by organic nitrogen compounds (9%), inorganic compounds (mostly NH3, 8%), unidentified/halogenated (3.8%), hydrocarbons (2.7%), and organic sulfur compounds (0.8%). The measured O/C ratios are lower than expected and suggest a significant effect from charring. A significant part of the organic nitrogen compounds is non volatile. Organic carbon concentrations measured with TD-PTR-MS were about 25% lower than measurements on high volume filter samples.


Sign in / Sign up

Export Citation Format

Share Document