scholarly journals Fe-Doped ZnO nanoparticle toxicity: assessment by a new generation of nanodescriptors

Nanoscale ◽  
2018 ◽  
Vol 10 (46) ◽  
pp. 21985-21993 ◽  
Author(s):  
Jaanus Burk ◽  
Lauri Sikk ◽  
Peeter Burk ◽  
Bella B. Manshian ◽  
Stefaan J. Soenen ◽  
...  

Toxicity and cancer-killing potency of Fe-doped ZnO nanoparticles can be reliably modelled using atomistic nanodescriptors.

2020 ◽  
Vol 1 (5) ◽  
pp. 1253-1261 ◽  
Author(s):  
Christian Mark Pelicano ◽  
Itaru Raifuku ◽  
Yasuaki Ishikawa ◽  
Yukiharu Uraoka ◽  
Hisao Yanagi

Strategic design of hierarachical core–shell heterostructure of H2O-oxidized ZnO nanorod@Mg-doped ZnO nanoparticles with enhanced charge-transport capabilities for optoelectronic devices.


2020 ◽  
pp. 13-20
Author(s):  
Luma Ahmed ◽  
Eitemad S. Fadhil ◽  
Ayad F. Mohammed

This article describes the synthesis of ZnO nanoparticles (Nps) using the co-precipitation method and then calcinated at 500oC for 2 h. The photo activity of ZnO nanoparticles was examined in photo decolorization of methyl green dye under artificial UV -A light. This prepared photocatalyst (ZnO Np) was modified his surface by 2% Ag doped using the photo deposition method under inert gas for 3h. The characterization of undoped and 2% Ag doped ZnO Nps were estimated by Fourier-transform infrared spectroscopy (FT-IR), X-ray Diffraction (XRD), and Atomic force microscopy (AFM). In FT-IR analysis, the new peaks occurred around 624-778 cm-1 confirmed the Ag really is doped on prepared ZnO Np. Based on data from XRD, the mean crystal size was reduced with doped the 2% Ag. The AFM images for the prepared photocatalysts ensure that the shapes of all samples are semi-spherical with nanometer size. Series of kinetics experiments were performed for the photocatalytic decolourization of methyl green dye using undoped and 2% Ag doped ZnO nanoparticle and found to be pseudo-first-order kinetics.


Author(s):  
Sourav Das ◽  
Soumen Ghosh ◽  
Ananyo Misra ◽  
Ashok Tamhankar ◽  
Amrita Mishra ◽  
...  

Antibiotic residues in the aquatic environment have the potential to induce resistance in environmental bacteria, which ultimately might get transferred to pathogens making treatment of diseases difficult and poses a serious threat to public health. If antibiotic residues in the environment could be eliminated or reduced, it could contribute to minimizing antibiotic resistance. Towards this objective, water containing ciprofloxacin was treated by sunlight-assisted photocatalysis using Fe- doped ZnO nanoparticles for assessing the degradation potential of this system. Parameters like pH, temperature, catalytic dosage were assessed for the optimum performance of the system. To evaluate degradation of ciprofloxacin, both spectrophotometric as well as microbiological (loss of antibiotic activity) methods were employed. 100 mg/L Fe-doped ZnO nanoparticle catalyst and sunlight intensity of 120,000–135,000 lux system gave optimum performance at pH 9 at 30 °C and 40 °C. Under these conditions spectrophotometric analysis showed complete degradation of ciprofloxacin (10 mg/L) at 210 min. Microbiological studies showed loss of antibacterial activity of the photocatalytically treated ciprofloxacin-containing water against Staphylococcus aureus (108 CFU) in 60 min and for Escherichia coli (108 CFU) in 75 min. The developed system, thus possess a potential for treatment of antibiotic contaminated waters for eliminating/reducing antibiotic residues from environment.


2018 ◽  
Vol 6 (36) ◽  
pp. 17688-17697 ◽  
Author(s):  
Fan Yang ◽  
Yalong Xu ◽  
Mengfan Gu ◽  
Sijie Zhou ◽  
Yongjie Wang ◽  
...  

Cesium-doped ZnO nanoparticle was synthesized for application in PbS QD solar cells as an efficient electron transporting layer.


2017 ◽  
Vol 17 (01n02) ◽  
pp. 1760017 ◽  
Author(s):  
P. Saravanan ◽  
A. Gnanavelbabu ◽  
P. Pandiaraj

Zinc oxide (ZnO) nanoparticles were synthesized by a simple solution route method using zinc acetate as the precursor and ethanol as the solvent. At a temperature of 60[Formula: see text]C, a clear homogenous solution is heated to 100[Formula: see text]C for ethanol evaporation. Then the obtained precursor powder is annealed at 600[Formula: see text]C for the formation of ZnO nanocrystalline structure. Doped ZnO particle is also prepared by using aluminum nitrate nonahydrate to produce aluminum (Al)-doped nanoparticles using the same solution route method followed by annealing. Thin film fabrication is done by air evaporation method using the polymer polyvinyl alcohol (PVA). To analyze the optical and thermal properties for undoped and doped ZnO nanocrystalline thin film by precursor annealing, characterizations such as UV, FTIR, AFM, TGA/DTA, XRD, EDAX and Photoluminescence (PL) were also taken. It was evident that precursor annealing had great influence on thermal and optical properties of thin films while ZnO and AZO film showed low crystallinity and intensity than in the powder form. TGA/DTA suggests pre-annealing effect improves the thermal stability, which ensures that Al ZnO nanoparticle can withstand at high temperature too which is the crucial advantage in the semiconductor devices. UV spectroscopy confirmed the presence of ZnO nanoparticles in the thin film by an absorbance peak observed at 359[Formula: see text]nm with an energy bandgap of 3.4[Formula: see text]eV. A peak obtained at 301[Formula: see text]nm with an energy bandgap of 4.12[Formula: see text]eV shows a blue shift due to the presence of Al-doped ZnO nanoparticles. Both ZnO and AZO bandgap increased due to precursor annealing. In this research, PL spectrum is also studied in order to determine the optical property of the nanoparticle embedded thin film. From PL spectrum, it is observed that the intensity of the doped ZnO is much more enhanced as the dopant concentration is increased to 1[Formula: see text]wt.% and 2[Formula: see text]wt.% of Al in ZnO.


2019 ◽  
Vol 11 (3) ◽  
pp. 03002-1-03002-5 ◽  
Author(s):  
A. Diha ◽  
◽  
S. Benramache ◽  
L. Fellah ◽  
◽  
...  

2020 ◽  
Vol 16 (4) ◽  
pp. 655-666
Author(s):  
Mona Rekaby

Objective: The influence of Manganese (Mn2+) and Cobalt (Co2+) ions doping on the optical and magnetic properties of ZnO nanoparticles was studied. Methods: Nanoparticle samples of type ZnO, Zn0.97Mn0.03O, Zn0.96Mn0.03Co0.01O, Zn0.95Mn0.03 Co0.02O, Zn0.93Mn0.03Co0.04O, and Zn0.91Mn0.03Co0.06O were synthesized using the wet chemical coprecipitation method. Results: X-ray powder diffraction (XRD) patterns revealed that the prepared samples exhibited a single phase of hexagonal wurtzite structure without any existence of secondary phases. Transmission electron microscope (TEM) images clarified that Co doping at high concentrations has the ability to alter the morphologies of the samples from spherical shaped nanoparticles (NPS) to nanorods (NRs) shaped particles. The different vibrational modes of the prepared samples were analyzed through Fourier transform infrared (FTIR) measurements. The optical characteristics and structural defects of the samples were studied through Photoluminescence (PL) spectroscopy. PL results clarified that Mn2+ and Co2+ doping quenched the recombination of electron-hole pairs and enhanced the number of point defects relative to the undoped ZnO sample. Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer (VSM). (Mn, Co) co-doped ZnO samples exhibited a ferromagnetic behavior coupled with paramagnetic and weak diamagnetic contributions. Conclusion: Mn2+ and Co2+ doping enhanced the room temperature Ferromagnetic (RTFM) behavior of ZnO. In addition, the signature for antiferromagnetic ordering between the Co ions was revealed. Moreover, a strong correlation between the magnetic and optical behavior of the (Mn, Co) co-doped ZnO was analyzed.


2020 ◽  
Vol 5 (3) ◽  
pp. 236-251
Author(s):  
Eshwara I. Naik ◽  
Halehatty S.B. Naik ◽  
Ranganaik Viswanath

Background: Various interesting consequences are reported on structural, optical, and photoluminescence properties of Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles synthesized by sol-gel auto-combustion route. Objective: This study aimed to examine the effects of Sm3+-doping on structural and photoluminescence properties of ZnO nanoparticles. Methods: Zn1-xSmxO (x=0, 0.01, 0.03 and 0.05) nanoparticles were synthesized by sol-gel auto combustion method. Results: XRD patterns confirmed the Sm3+ ion substitution through the undisturbed wurtzite structure of ZnO. The crystallite size was decreased from 24.33 to 18.46 nm with Sm3+ doping. The hexagonal and spherical morphology of nanoparticles was confirmed by TEM analysis. UV-visible studies showed that Sm3+ ion doping improved the visible light absorption capacity of Sm3+ iondoped ZnO nanoparticles. PL spectra of Sm3+ ion-doped ZnO nanoparticles showed an orange-red emission peak corresponding to 4G5/2→6HJ (J=7/2, 9/2 and 11/2) transition of Sm3+ ion. Sm3+ ion-induced PL was proposed with a substantial increase in PL intensity with a blue shift in peak upon Sm3+ content increase. Conclusion: Absorption peaks associated with doped ZnO nanoparticles were moved to a longer wavelength side compared to ZnO, with bandgap declines when Sm3+ ions concentration was increased. PL studies concluded that ZnO emission properties could be tuned in the red region along with the existence of blue peaks upon Sm3+ ion doping, which also results in enhancing the PL intensity. These latest properties related to Sm3+ ion-doped nanoparticles prepared by a cost-efficient process appear to be interesting in the field of optoelectronic applications, which makes them a prominent candidate in the form of red light-emitting diodes.


Sign in / Sign up

Export Citation Format

Share Document