A type of thiophene-bridged silica aerogel with a high adsorption capacity for organic solvents and oil pollutants

2018 ◽  
Vol 5 (8) ◽  
pp. 1894-1901 ◽  
Author(s):  
Yuetao Liu ◽  
Jiawen Sun ◽  
Junguo Yuan ◽  
Shuai Wang ◽  
Yu Ding ◽  
...  

Thiophene-bridged silica aerogel was prepared from tetraethyl orthosilicate (TEOS) and 2,5-divinyltrimethoxysilanethiophene (DVTHP) through a facile sol–gel reaction and ambient pressure drying process.

2019 ◽  
Vol 11 (45) ◽  
pp. 5784-5792 ◽  
Author(s):  
Xiangping Ji ◽  
Juanjuan Feng ◽  
Chunying Li ◽  
Sen Han ◽  
Jiaqing Feng ◽  
...  

A silica aerogel with high surface area was prepared by an acid–base two-step catalytic sol–gel method under ambient pressure drying.


Author(s):  
A.R. Hidayu ◽  
N.F. Mohammad ◽  
S.I.S. Jamaludin ◽  
N.F.M.K. Teo ◽  
N.S.M. Sah ◽  
...  

Abstract: Rice husk has attracted considerable attention in the recent years due to its chemical component that are beneficial to a wide range of application. . In this paper, silica aerogel from rice husk ash (RHA) was prepared through sol-gel processing and ambient pressure drying. The silica RHA was extracted with sodium hydroxide solution to produce sodium silicate solution and neutralized with sulphuric acid to form silica gel. Then, the silica aerogel was further modified with amine, which is 3-(aminopropyl) triethoxysilane (APTES) because amine groups provide specific adsorption sides for CO2 adsorption. The functional group, surface morphology and elemental composition of rice husk, silica aerogel and modified silica aerogel were characterized by Fourier transform infrared spectroscopy (FTIR), Scanning Electronic Microscopy (SEM) and Elemental analyser (EA). For amine modified silica aerogel, it was found that the sample consists of N-H band at a certain peak. FTIR and SEM analysis revealed the synthesized silica aerogel has fibrous morphology and indicates similar trend with previous researches. The amine modified silica aerogel (AMSA) is able to adsorb 0.88 mol CO2/kg AMSA. This study shows that the rice husk silica aerogel modified with APTES could enhance the CO2 adsorption performance due to the physisorption and chemisorption


2021 ◽  
Vol 8 ◽  
Author(s):  
Riyong Liu ◽  
Jin Wang ◽  
Jianhe Liao ◽  
Xuetong Zhang

A robust silica–polyimide (PI) aerogel blanket is designed and synthesized using the PI foam as the matrix and silica aerogel as the filler through an in situ method, where sol–gel transition of silica precursor occurs in pores of the PI foam, followed by the hydrophobization and ambient pressure drying. The density of the aerogel blanket ranges from 0.036 to 0.196 g/cm3, and the low density is directly controlled by tailoring the silica concentration. The specific surface area of the aerogel blanket reaches 728 m2/g. These features of the blanket result in a low thermal conductivity of 0.018 W/mK, which shows a remarkable reduction of 59% compared to that of the PI foam (0.044 W/mK). As a result, a remarkable decrease of 138°C is achieved using the silica blanket as the thermal insulator on a hot plate of approximately 250°C. In addition, the temperature degradation of the blanket is around 500°C, and up to 86% of mass remaining at 900°C is obtained. The blanket is resistant at extremely harsh conditions, e.g., 600°C for 30 min and 1,300°C for 1 min, and no open flame is observed, suggesting a significant flame-retardant of the blanket. Owing to the three-dimensional (3D) porous framework of the PI foam, the silica aerogel is encapsulated in the PI foam and the blanket exhibits strong mechanical property. The silica–PI aerogel can be reversibly compressed for 50 cycles without reduction of strain. The contact angle of the blanket is 153°, which shows a superior waterproof property. Combining with the low density, low thermal conductivity, flame-retardant, and strong mechanical strength, the aerogel blanket has the potential as an artificial island, which is safe (waterproof and flame-retardant), lightweight, comfortable, and easy to be moved.


2012 ◽  
Vol 534 ◽  
pp. 205-208 ◽  
Author(s):  
Fei Shi ◽  
Lu Nan Bai ◽  
Jing Xiao Liu ◽  
Xiao Li Dong ◽  
Jia Yu Luo ◽  
...  

Using sodium tungsten and industrial water glass as raw materials, SiO2-WO3 composite aerogels were prepared by ambient pressure drying process. The hexamethyldisilazane(HMDSZ)/hexamethyldisiloxane(HMDSO)/hexane mixing solution was used to modify the sol-gel-derived SiO2-WO3 wet gel. The microstructure, morphology and pore characteristics of the obtained SiO2-WO3 composite aerogels were investigated by XRD, SEM, FTIR and BET N2 adsorption-desorption analysis. The adsorption/photocatalytic degradation for Rhodamine B of SiO2-WO3 composite aerogel was investigated. The results indicate that mesoporous SiO2-WO3 composite aerogel with specific surface area 660.8 m2/g and pore volume 1.94 cm3/g could be prepared by using HMDSZ/HMDSO/hexane mixing solution to modify the wet gel. The obtained SiO2-WO3 composite aerogels have good adsorption/photocatalytic degradation for Rhodamine B than that of pure WO3 aerogel.


Sign in / Sign up

Export Citation Format

Share Document