scholarly journals Combretastatin A4-camptothecin micelles as combination therapy for effective anticancer activity

RSC Advances ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 1055-1061 ◽  
Author(s):  
Mohyeddin Assali ◽  
Naim Kittana ◽  
Sahar Alhaj Qasem ◽  
Raghad Adas ◽  
Doaa Saleh ◽  
...  

Novel CA4-TEG-triazole-TEG-Cpt (codrug 9) was synthesized and self-assembled into a micelle structure that showed a great synergistic anticancer activity on HeLa cancer cells without affecting the viability of 3T3 normal cells.

2018 ◽  
Vol 54 (71) ◽  
pp. 9929-9932 ◽  
Author(s):  
Soumik Dinda ◽  
Saheli Sarkar ◽  
Prasanta Kumar Das

Glucose oxidase (GOx) mediated targeted cancer-starving therapy, by blocking the energy supply to cancer cells, has been demonstrated using GOx encapsulating monolayer vesicles of a trimesic acid based biotinylated amphiphile (TMB). GOx, loaded within the TMB vesicles, was selectively delivered inside the cancer cells, resulting in ∼6-fold higher killing of cancer cells compared to normal cells.


2016 ◽  
Vol 5 (5) ◽  
Author(s):  
Joe Antony Jacob ◽  
Jumah Masoud Mohammad Salmani ◽  
Baoan Chen

AbstractMagnetic nanoparticles are renowned for their anticancer activity. Recent studies have elucidated that magnetic nanoparticles induce cytotoxicity by induction of apoptosis in cancer cells. The magnetic nanoparticles can also be biosynthesized, and this presents an added advantage along with the concept of limited toxicity to normal cells. This review focuses on the mechanistic studies performed on the anticancer activity of different types of magnetic nanoparticles. Apoptosis was shown to be the most plausible reason behind the cell death mediated by various types of magnetic nanoparticles.


Author(s):  
José Manuel Calderón-Montaño ◽  
Sara María Martínez-Sánchez ◽  
Estefanía Burgos-Morón ◽  
Emilio Guillén-Mancina ◽  
Julio José Jiménez-Alonso ◽  
...  

In our continuous search for selective anticancer treatments, we have screened 65 extracts from 45 plants collected in several areas of Western Andalusia (Spain) for cytotoxic activity against lung cancer cells and lung normal cells. Active extracts were also tested against 11 cell lines from other tissues. An extract from the leaves of Tetraclinis articulata (Vahl) Mast. (Cupressaceae) showed a marked cytotoxicity (IC50 = 0.37 ± 0.03 µg/mL) and selectivity (selectivity index = 378.3) against the lung cancer cells; cisplatin, 5-fluorouracil and an extract from the leaves of Taxus baccata L. (Taxaceae) were less cytotoxic and selective.


Author(s):  
Zhixian Shi ◽  
Li Chen ◽  
Jianbo Sun

Background: Natural products and their molecular frameworks have been explored as invaluable sources of inspiration for drug design by means of structural modification, computer aided drug design, and so on. Scopoletin extracting from multiple herbs exhibits potential anticancer activity in vitro and vivo without toxicity towards normal cells. Objective: To obtain new scopoletin derivatives with enhanced anticancer activity, we performed the chemical structure modification and researched the mechanism of anti-tumor activity. Methods: In this study, we take regard scopoletin as lead compound, designed and synthesized a series of scopoletin derivatives via introducing different heterocyclic fragments, and their chemical structures were characterized by NMR spectra (1H NMR and 13C NMR) and HRMS(ESI). The antiproliferative activity of target compounds in four cancer cell lines (MDA-MB-231, MCF-7, HepG2, and A549) were determined by the MTT assay. Compound 11b was treated with Ac-cys under different reaction condition to explore the thiol addition activity of it. The Annexin V/PI and JC-1 staining assay were performed to investigate the anti-tumor mechanism of 11b. Results: Novel compounds 8a-h and 11a-h derivatives of scopoletin were synthesized. Most of target compounds exhibited enhanced antiproliferative activity against different cancer cells and reduced toxicity towards normal cells. In particular, 11b displayed the optimal antitumor ability against breast cancer MDA-MB-231 cells with an IC50 value of 4.46 μM. 11b also cannot react with Ac-cys under the experimental condition. When treated with 11b for 24 h, the total apoptotic cells increased from 10.8% to 79.3%. Besides, 11b induced the depolarization of mitochondrial membrane potential. Conclusion: 11b was more active than other derivatives, indicating that the introduction of thiophene fragment was beneficial for the enhancement of antitumor effect, and it was also not an irreversible inhibitor basing on the result that the α, β-unsaturated ketones of 11b cannot undergo Michael addition reactions with Ac-cys. Furthermore, studies on the pharmacological mechanism showed that 11b induced the mitochondrial depolarization and apoptosis, which indicated 11b killed cancer cells via mitochondrial apoptotic pathway. Therefore, an in-depth research and structure optimization of this compound is warranted.


2019 ◽  
Vol 43 (20) ◽  
pp. 7874-7880 ◽  
Author(s):  
Xiaozheng Cao ◽  
Tang Gao ◽  
Jie Dong ◽  
Xinchen Jiang ◽  
Hui Zou ◽  
...  

The first AIE-based fluorescent probe TPI-IMC was developed for imaging of cyclooxygenase-2 (COX-2) in normal cells and cancer cells.


2020 ◽  
Vol 8 (2) ◽  
pp. 112-119
Author(s):  
Omniya M. Abd-Elazeem ◽  
Nehal A.H.k. Osman ◽  
Nahla S. El-Shenawy

Cancer is considered as one of the major health problems worldwide. So far, no completely effective method has been found for cancer treatment. Therefore, the rise of using natural products has been proposed as an alternative therapy in this regard. For many years, the seaweed has been a source of many functional bioactive compounds including polysaccharides, polyphenols, pigments, terpenes, and many others. These compounds have shown many bioactivities including anticancer activity against different kinds of cancer. Bioactive compounds obtained from the seaweed have been demonstrated to cause apoptosis in cancer cells and trigger cell cycle arrest with low cytotoxicity against normal cells. In this review, it was attempted to shed light on the anticancer activity of some seaweed-derived bioactive compounds.


Author(s):  
Estefanía Burgos-Morón ◽  
Nuria Pastor ◽  
Manuel Luis Orta ◽  
Julio José Jiménez-Alonso ◽  
Margarita Vega-Holm ◽  
...  

Several clinically useful anticancer drugs selectively kill cancer cells by inducing DNA damage; the genomic instability and DNA repair defects of cancer cells make them more vulnerable than normal cells to the cytotoxicity of DNA-damaging agents. Because epoxide-containing compounds can induce DNA damage, we have used the MTT assay to evaluate the selective cytotoxicity of three epoxyalkyl galactopyranosides against A549 lung cancer cells and MRC-5 lung normal cells. Compound (2S,3S)-2,3-Epoxydecyl 4,6-O-(S)-benzylidene-β-D-galactopyranoside (EDBGP) showed the highest selective anticancer activity and was selected for mechanistic studies. After observing that EDBGP induced cellular DNA damage (comet assay), we found that cells deficient in nucleotide excision repair were hypersensitive to the cytotoxicity of this compound; this suggests that EDBGP may induce bulky DNA adducts. EDBGP did not inhibit glycolysis (glucose consumption and lactate production). Pre-treatment of lung cancer cells with several antioxidants did not reduce the cytotoxicity of EDBGP, thereby indicating that reactive oxygen species do not participate in the anticancer activity of this compound. Finally, EDBGP was screened against a panel of cancer cells and normal cells from several tissues, including three genetically modified skin fibroblasts with increasing degree of malignancy. Our results suggest that epoxyalkyl galactopyranosides are promising lead compounds for the development of new anticancer agents.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Estefanía Burgos-Morón ◽  
Nuria Pastor ◽  
Manuel Luis Orta ◽  
Julio José Jiménez-Alonso ◽  
Carlos Palo-Nieto ◽  
...  

We recently screened a series of new aziridines β-D-galactopyranoside derivatives for selective anticancer activity and identified 2-methyl-2,3-[N-(4-methylbenzenesulfonyl)imino]propyl 2,3-di-O-benzyl-4,6-O-(S)-benzylidene-β-D-galactopyranoside (AzGalp) as the most promising compound. In this article, we explore the possible mechanisms involved in the cytotoxicity of this aziridine and evaluate its selective anticancer activity using cancer cells and normal cells from a variety of tissues. Our data show that AzGalp induces DNA damage (comet assay). Cells deficient in the nucleotide excision repair (NER) pathway were hypersensitive to the cytotoxicity of this compound. These results suggest that AzGalp induces bulky DNA adducts, and that cancer cells lacking a functional NER pathway may be particularly vulnerable to the anticancer effects of this aziridine. Several experiments revealed that neither the generation of oxidative stress nor the inhibition of glycolysis played a significant role in the cytotoxicity of AzGalp. Combinations of AzGalp with oxaliplatin or 5-fluorouracil slightly improved the ability of both anticancer drugs to selectively kill cancer cells. AzGalp also showed selective cytotoxicity against a panel of malignant cells versus normal cells; the highest selectivity was observed for two acute promyelocytic leukemia cell lines. Additional preclinical studies are necessary to evaluate the anticancer potential of AzGalp.


Author(s):  
Estefanía Burgos-Morón ◽  
Nuria Pastor ◽  
Manuel Luis Orta ◽  
Julio José Jiménez-Alonso ◽  
Carlos Palo-Nieto ◽  
...  

We recently screened a series of new aziridines β-D-galactopyranoside derivatives for selective anticancer activity and identified 2-methyl-2,3-[N-(4-methylbenzenesulfonyl)imino]propyl 2,3-di-O-benzyl-4,6-O-(S)-benzylidene-β-D-galactopyranoside (AzGalp) as the most promising compound. In this article, we explore possible mechanisms involved in the cytotoxicity of this aziridine and evaluate its selective anticancer activity using cancer cells and normal cells from a variety of tissues. Our data show that AzGalp induces DNA damage (detected with the comet assay). Cells deficient in the DNA repair pathway nucleotide excision repair (NER) were hypersensitive to the cytotoxicity of this compound. These results suggest that AzGalp induces bulky DNA adducts, and that cancer cells lacking a functional NER pathway may be particularly vulnerable to the anticancer effects of this aziridine. Several experiments revealed that neither the generation of oxidative stress nor the inhibition of glycolysis played a significant role in the cytotoxicity of AzGalp. The combinations of AzGalp with either oxaliplatin or 5-fluorouracil slightly improved the ability of both anticancer drugs to selectively kill cancer cells. AzGalp also displayed selective cytotoxicity against a panel of malignant cells versus normal cells; the highest selectivity was observed for two acute promyelocytic leukemia cell lines. Additional preclinical studies are necessary to evaluate the anticancer potential of AzGalp.


Sign in / Sign up

Export Citation Format

Share Document