scholarly journals Fundamental aspects of the corrosion of N80 steel in a formation water system under high CO2 partial pressure at 100 °C

RSC Advances ◽  
2019 ◽  
Vol 9 (21) ◽  
pp. 11641-11648 ◽  
Author(s):  
Huixin Li ◽  
Dapeng Li ◽  
Lei Zhang ◽  
Yang Bai ◽  
Yun Wang ◽  
...  

The corrosion behavior of N80 carbon steel in a simulated formation water system saturated with CO2 under high pressure at 100 °C was investigated.

Author(s):  
Kaikai Li ◽  
Wei Wu ◽  
Guangxu Cheng ◽  
Yun Li ◽  
Haijun Hu ◽  
...  

Natural gas transmission pipeline is prone to internal corrosion due to the combination of corrosive impurities in the pipe (such as CO2, H2S and chlorides) and applied pressure of the pipeline, which seriously affects the safe operation of the pipeline. In this work, the corrosion behavior of a typical X70 pipeline steel was investigated by using potentiodynamic polarization and electrochemical impendence spectroscopy (EIS). The polarization and EIS data under different CO2 partial pressures (0–1 atm), H2S concentrations (0–150 ppm), chloride concentrations (0–3.5 wt%) and tensile stress (0–400 MPa) were obtained. The results show that corrosion rate increases with the increase of CO2 partial pressure and chloride concentration, respectively, while first increases and then decreases with the increase H2S concentrations. The corrosion rate is less affected by elastic tensile stress. In addition, a quantitative prediction model for corrosion rate of natural gas pipeline based on adaptive neuro-fuzzy inference system (ANFIS) was established by fitting the experimental data which maps the relationship between the key influencing factors (i.e. CO2 partial pressure, H2S concentration, chloride concentration and tensile stress) and the corrosion rate. The prediction results show that the relative percentage errors of the predicted and experimental values are relatively small. The prediction accuracy of the model satisfies the engineering application requirement.


2021 ◽  
Author(s):  
Jorge Rodriguez ◽  
Susana Gómez ◽  
Ngoc Tran Dinh ◽  
Giovanni Ortuño ◽  
Narendra Borole

Abstract The paper presents the application of a holistic approach to corrosion prediction that overcomes classical pitfalls in corrosion testing and modelling at high pressure, high temperature and high CO2 conditions. Thermodynamic modelling of field and lab conditions allows for more accurate predictions by a novel CO2/H2S general corrosion model validated by laboratory tests. In the proposed workflow, autoclave tests at high pressure and temperature are designed after modeling corrosion in a rigorous thermodynamic framework including fluid-dynamic modelling; the modeled steps include preparation, gas loading and heating of fluid samples at high CO2 concentration, and high flow velocities. An autoclave setup is proposed and validated to simultaneously test different conditions. Corrosion rates are extrapolated to compute service life of the materials and guide material selection. The results from the model and tests extend the application of selected stainless steel grade beyond the threshold conditions calculated by simplistic models and guidelines. Consideration of fugacities and true aqueous compositions allows for accurate thermodynamic representation of field conditions. Computation by rigorous fluid dynamics of shear stress, multiphase flow and heat transfer effects inside completion geometry lead to a proper interpretation of corrosion mechanisms and models to apply. In the case study used to showcase the workflow, conventional stainless steel is validated for most of the tubing. It is observed that some sections of the system in static condition are not exposed to liquid water, allowing for safe use of carbon steel, while as for other critical parts, more noble materials are deemed necessary. Harsh environments pose a challenge to the application of conventional steel materials. The workflow applied to the case study allows accurate representation and application of materials in its application limit region, allowing for safe use of carbon steel or less noble stainless steels in those areas of the completion where corrosion is limited by multiphase fluid-dynamics, heat transfer or the both. The approximation is validated for real case study under high CO2 content, and is considered also valid in the transportation of higher amounts of CO2, for example, in CCUS activities.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4245
Author(s):  
Gaetano Palumbo ◽  
Kamila Kollbek ◽  
Roma Wirecka ◽  
Andrzej Bernasik ◽  
Marcin Górny

The effect of CO2 partial pressure on the corrosion inhibition efficiency of gum arabic (GA) on the N80 carbon steel pipeline in a CO2-water saline environment was studied by using gravimetric and electrochemical measurements at different CO2 partial pressures (e.g., PCO2 = 1, 20 and 40 bar) and temperatures (e.g., 25 and 60 °C). The results showed that the inhibitor efficiency increased with an increase in inhibitor concentration and CO2 partial pressure. The corrosion inhibition efficiency was found to be 84.53% and 75.41% after 24 and 168 h of immersion at PCO2 = 40 bar, respectively. The surface was further evaluated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy (XPS) measurements. The SEM-EDS and GIXRD measurements reveal that the surface of the metal was found to be strongly affected by the presence of the inhibitor and CO2 partial pressure. In the presence of GA, the protective layer on the metal surface becomes more compact with increasing the CO2 partial pressure. The XPS measurements provided direct evidence of the adsorption of GA molecules on the carbon steel surface and corroborated the gravimetric results.


2020 ◽  
Vol 1 (2) ◽  
pp. 27-30
Author(s):  
Bo Zhao ◽  
Yuxin Yu ◽  
Jing Guo ◽  
Tianyu Zhou ◽  
Shiwen Zou ◽  
...  

In this article, wire beam electrode (WBE) was used to evaluate the corrosion behavior of ND steel in environmental acid atmosphere with different partial pressure of CO2. Meanwhile, corrosion products and surface morphology analysis also used to support this research. The results showed that the corrosion behavior began from the edge of droplet in dew point corrosion, and gradually spread to the center of it. The spread speed would be increasing with CO2 partial pressure enhance, which was 24h in 5% CO2 and 4h in 50% CO2. Corrosion current density in the edge of droplet can form the “cathode-anode-cathode ring” structure and disappears gradually as the corrosion time was going. Corrosion morphology observation results showed three ring shapes region and different elemental composition of different corrosion products, which is correspondence with the “cathode-anode We-cathode ring” structure measured in WBE experiments. The results showed that the reaction gradually transferred to the uniform corrosion on electrode surface when the dew point corrosion reaction reaching the late stage. It comes from the dissolution, diffusion and reaction of gaseous corrosion medium of CO2 and O2.


2019 ◽  
Vol 58 (27) ◽  
pp. 12235-12246 ◽  
Author(s):  
Muhammad Zubair Shahid ◽  
Abdulhalim Shah Maulud ◽  
M Azmi Bustam ◽  
Humbul Suleman ◽  
Hairul Nazirah Abdul Halim ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document