Hydrogen derived from water as a sustainable solar fuel: learning from biology

2018 ◽  
Vol 2 (5) ◽  
pp. 927-935 ◽  
Author(s):  
James Barber

The United Nations Climate Change Conference (COP21) held in Paris in 2015 and the follow-up conferences in Marrakesh (COP22) and very recently in Bonn (COP23) have established an unprecedented international agreement that during this century human society must break from its reliance on energy from fossil fuels to energy sources, which do not release greenhouse gases, particularly carbon dioxide.

Stanovnistvo ◽  
2017 ◽  
Vol 55 (1) ◽  
pp. 1-20 ◽  
Author(s):  
Predrag Petrovic ◽  
Goran Nikolic ◽  
Ivana Ostojic

Over the past several decades there has been a strong intensifying trend of human society impact on ecosystems, consumption of natural resources and global change. The environmental impact of the society is fully apparent and dominantly implemented through various greenhouse gases emissions (GHG), leading towards global climate change with considerably spread harmful effects. Global climate change includes the earth and ocean surface and atmospheric warming, but also melting of snow and ice, increase of sea levels and ocean acidity, as well as ever more common natural phenomena extremes (winds, various forms of rainfall/precipitation, extremely low or high temperatures, etc.). Scientists are well-familiarized with the fact that use of fossil fuels, such as oil derivatives and coal, is the main generator of harmful gases. In addition, possible substitutions for fossil fuels in the form of other energy sources are very limited, and it should be remembered that other energy sources also have certain adverse environmental effects. Bearing in mind climate change caused by products of fossil fuels combustion, as well as inevitable depletion of natural crude oil resources, management of growing global energy demand becomes one of the key goals and challenges of 21st century. If these reasons are coupled with obligations emanating from Kyoto Protocol, it is clear that attention of researches should be more than reasonably focused on the main determinants of energy consumption. This study is focused on illumination of key demographic and economic determinants of energy consumption in 28 EU member states in the period 1960- 2014. The results obtained demonstrate that population positively and quite strongly influence total energy consumption. An increase of population of 1% will result in an increase of energy consumption of 1.59% to 1.76%. Such relation most probably can be explained by the fact that demographic growth of the society aggravates and complicates planning processes of efficient energy consumption, diminishing the ability of society to be energy efficient. The population effect of persons aged 65 and above to energy consumption is also positive. An increase in share of this age group of 1% will result in an increase in energy consumption of approximately 0.43%. Positive elasticity coefficient should be understood as a proof that European societies with higher share of senior citizens consume more energy that societies with higher share of younger population, not necessarily as an argument that senior citizens use more energy than younger population. The explanation for such nature of a cause-andeffect relation could be that high share of senior citizens influences the structure of production and consumption, spatial distribution of population, transport infrastructure and social services provided. A significant influence on energy consumption in the EU is made by the level of economic development of countries, which is in accordance with the Environmental Kuznets Curve (EKC), suggesting a relation of inverted letter ?U?. The amount of income per capita needed to have the EKC expressed ranges between 54,183 and 81,552 dollars.


2016 ◽  
Vol 58 ◽  
pp. 35-41
Author(s):  
Irfan Mahmood ◽  
Muhammad Farooq Iqbal ◽  
Muhammad Imran Shahzad ◽  
Ahmed Waqas ◽  
Luqman Atique

Carbon dioxide (CO2), Methane (CH4) are two most potent greenhouse gases and are major source of climate change. Human activities particularly fossil fuels burning have caused considerable increase in atmospheric concentrations of greenhouse gases. CO2contributes 60% of anthropogenic greenhouse effect whereas CH4contributes 15%. Ice core records also show that the concentrations of Carbon dioxide and methane have increased substantially. The emission of these gases alters the Earth’s energy budget and are drivers of climate change. In the present study, atmospheric concentration of CO2and CH4over Pakistan is measured using Atmospheric Infrared Sounder (AIRS). Time series and time averaged maps are prepared to measure the concentrations of CO2and CH4. The results show considerable increase in concentration of Carbon dioxide and methane. The substantial increase in these concentrations can affect human health, earth radiative balance and can damage crops.


Author(s):  
Mark Maslin

‘What is climate change?’ examines the role of greenhouse gases (GHGs) in moderating past global climate; why they have been rising since the industrial revolution; and why they are now considered dangerous pollutants. It considers which countries have produced the most GHGs and how this is changing with rapid global development. The Intergovernmental Panel on Climate Change regularly collates and assesses the most recent key research and evidence for climate change. Its assessments have a profound influence on the negotiators of the United Nations Framework Convention on Climate Change (UNFCCC). As more carbon is emitted into the atmosphere the effects of climate change will increase, which will threaten and challenge human society.


Author(s):  
Vasile Popa ◽  
Octavian Cocoș

Human society faces the great challenge of drastically reducing greenhouse gas emissions while providing increased amounts of energy. Although the share of renewable energy sources has increased in recent years, fossil fuels are still widely used and burning them makes large amounts of carbon dioxide enter the atmosphere. However, renewable energy sources may not be able to supply in time enough energy to replace fossil fuels. Under the circumstances, the question arises as to whether nuclear energy could play a significant role in mitigating climate change. Although there is still confidence and support for nuclear energy, it is unlikely that this energy source will make a greater contribution to combating climate change in the coming decades. This study analyzes the current state of nuclear energy, as well as the development prospects in the context of climate change and risks to the environment and human health.


Author(s):  
Richard Bardgett

The world’s climate is changing. Not only is it getting warmer, but also there are more extreme weather events, such as droughts, storms, and catastrophic floods. Humans are undoubtedly the cause of this change in climate, through the burning of fossil fuels, intensive farming, deforestation, and many other aspects of our industrious lives that increase the emission of greenhouse gases—carbon dioxide, methane, and nitrous oxide—to the atmosphere. In fact, over the past fifty years or so there has been an unprecedented increase in the release of greenhouse gases to the atmosphere, and, unless measures are put in place to cap emissions, this trend is likely to continue. So what have soils got to do with climate change? Put simply, soils play a pivotal role because they act as both a source and sink for greenhouse gases, and any disruption of this balance will affect the concentration of these gases in the atmosphere and hence the global climate, potentially making the situation either better or worse. Perhaps the most powerful illustration of this concerns the carbon cycle. Soil is the Earth’s third largest carbon store, next to the oceans and deep deposits of fossil fuels, and together with vegetation it contains at least three times more carbon than the atmosphere. Many worry that climate change will destabilize these carbon stores by stimulating the soil organisms that break down soil organic matter, releasing vast quantities of carbon dioxide to the atmosphere. This could shift soils from being sinks to sources of this greenhouse gas, thereby accelerating climate change. Scientists call this carbon-cycle feedback, and we will revisit it later. Let’s begin with the main actors of climate change, the greenhouse gases. The most abundant and well-known greenhouse gas is carbon dioxide. This gas is taken up from the atmosphere by plants through the process of photosynthesis, which occurs in the presence of light. Plants retain most of the carbon they take up and use it to grow and sustain their metabolism, but they also release a portion back to the atmosphere as carbon dioxide through respiration from both their shoots and roots.


2013 ◽  
Vol 5 ◽  
pp. 1-15
Author(s):  
C.H. Ekanem ◽  
H.E. Ekanem ◽  
F.D. Eyenaka ◽  
E.A. Isaiah

The rising levels of greenhouse gases (GHGs) in the Earth’s atmosphere have the potential to cause changes in our climate. Some of these emission increases can be traced directly to solid waste. Landfills are among the largest emitters of carbon dioxide and methane, the key GHGs. Thus, effective mitigation of these emissions through formalization of waste reduction into the waste management system to reduce land filling could provide environmental benefits of reducing the adverse impacts of climate change. This paper therefore proposes waste prevention and recycling-jointly referred to as waste reduction as better and most potent strategies for the management of solid waste and for reducing greenhouse gases and calls on both the government and private agencies to check or control the increasing pollution or abuse of the environment by enforcing compliance with the laid out Policies, Pronouncements, Regulations and enacted Legislation especially in the developing countries. The study concludes that by choosing to prevent waste and recycle, less waste will be generated, the need for landfill will be minimal, energy demand will decrease, fewer fossil fuels will be burned and less methane and carbon dioxide will be emitted to the atmosphere which helps to curb climate change.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Angela Margaret Evans

Abstract Background Healthcare aims to promote good health and yet demonstrably contributes to climate change, which is purported to be ‘the biggest global health threat of the 21st century’. This is happening now, with healthcare as an industry representing 4.4% of global carbon dioxide emissions. Main body Climate change promotes health deficits from many angles; however, primarily it is the use of fossil fuels which increases atmospheric carbon dioxide (also nitrous oxide, and methane). These greenhouse gases prevent the earth from cooling, resulting in the higher temperatures and rising sea levels, which then cause ‘wild weather’ patterns, including floods, storms, and droughts. Particular vulnerability is afforded to those already health compromised (older people, pregnant women, children, wider health co-morbidities) as well as populations closer to equatorial zones, which encompasses many low-and-middle-income-countries. The paradox here, is that poorer nations by spending less on healthcare, have lower carbon emissions from health-related activity, and yet will suffer most from global warming effects, with scant resources to off-set the increasing health care needs. Global recognition has forged the Paris agreement, the United Nations sustainable developments goals, and the World Health Organisation climate change action plan. It is agreed that most healthcare impact comes from consumption of energy and resources, and the production of greenhouse gases into the environment. Many professional associations of medicine and allied health professionals are advocating for their members to lead on environmental sustainability; the Australian Podiatry Association is incorporating climate change into its strategic direction. Conclusion Podiatrists, as allied health professionals, have wide community engagement, and hence, can model positive environmental practices, which may be effective in changing wider community behaviours, as occurred last century when doctors stopped smoking. As foot health consumers, our patients are increasingly likely to expect more sustainable practices and products, including ‘green footwear’ options. Green Podiatry, as a part of sustainable healthcare, directs us to be responsible energy and product consumers, and reduce our workplace emissions.


Author(s):  
Kau-Fui Vincent Wong ◽  
Guillermo Amador

As society continues advancing into the future, more energy is required to supply the increasing population and energy demands. Unfortunately, traditional forms of energy production through the burning of carbon-based fuels are dumping harmful pollutants into the environment, resulting in detrimental, and possibly irreversible, effects on our planet. The burning of coal and fossil fuels provides energy at the least monetary cost for countries like the US, but the price being paid through their negative impact of our atmosphere is difficult to quantify. A rapid shift to clean, alternative energy sources is critical in order to reduce the amount of greenhouse gas emissions. For alternative energy sources to replace traditional energy sources that produce greenhouse gases, they must be capable of providing energy at equal or greater rates and efficiencies, while still functioning at competitive prices. The main factors hindering the pursuit of alternative sources are their high initial costs and, for some, intermittency. The creation of electrical energy from natural sources like wind, water, and solar is very desirable since it produces no greenhouse gases and makes use of renewable sources—unlike fossil fuels. However, the planning and technology required to tap into these sources and transfer energy at the rate and consistency needed to supply our society comes at a higher price than traditional methods. These high costs are a result of the large-scale implementation of the state-of-the-art technologies behind the devices required for energy cultivation and delivery from these unorthodox sources. On the other hand, as fossil fuel sources become scarcer, the rising fuel costs drive overall costs up and make traditional methods less cost effective. The growing scarcity of fossil fuels and resulting pollutants stimulate the necessity to transition away from traditional energy production methods. Currently, the most common alternative energy technologies are solar photovoltaics (PVs), concentrated solar power (CSP), wind, hydroelectric, geothermal, tidal, wave, and nuclear. Because of government intervention in countries like the US and the absence of the need to restructure the electricity transmission system (due to the similarity in geographical requirements and consistency in power outputs for nuclear and traditional plants), nuclear energy is the most cost competitive energy technology that does not produce greenhouse gases. Through the proper use of nuclear fission electricity at high efficiencies could be produced without polluting our atmosphere. However, the initial capital required to erect nuclear plants dictates a higher cost over traditional methods. Therefore, the government is providing help with the high initial costs through loan guarantees, in order to stimulate the growth of low-emission energy production. This paper analyzes the proposal for the use of nuclear power as an intermediate step before an eventual transition to greater dependence on energy from wind, water, and solar (WWS) sources. Complete dependence on WWS cannot be achieved in the near future, within 20 years, because of the unavoidable variability of these sources and the required overhaul of the electricity transmission system. Therefore, we look to nuclear power in the time being to help provide predictable power as a means to reduce carbon emissions, while the other technologies are refined and gradually implemented in order to meet energy demand on a consistent basis.


2018 ◽  
Vol 25 (3) ◽  
pp. 383-394 ◽  
Author(s):  
Marta Marszałek ◽  
Zygmunt Kowalski ◽  
Agnieszka Makara

Abstract Pig slurry is classified as a natural liquid fertilizer, which is a heterogeneous mixture of urine, faeces, remnants of feed and technological water, used to remove excrement and maintain the hygiene of livestock housing. The storage and distribution of pig slurry on farmland affect the environment as they are associated with, among others, the emission of various types of gaseous pollutants, mainly CH4, CO2, N2O, NH3, H2S, and other odorants. Methane (CH4), carbon dioxide (CO2) and nitrous oxide (N2O) are greenhouse gases (GHGs) which contribute to climate change by increasing the greenhouse effect. Ammonia (NH3) and hydrogen sulfide (H2S) are malodorous gases responsible for the occurrence of odour nuisance which, due to their toxicity, may endanger the health and lives of humans and animals. NH3 also influences the increase of atmosphere and soil acidification. The article presents the environmental impact of greenhouse gases and odorous compounds emitted from pig slurry. Key gaseous atmospheric pollutants such as NH3, H2S, CH4, CO2 and N2O have been characterized. Furthermore, methods to reduce the emission of odours and GHGs from pig slurry during its storage and agricultural usage have been discussed.


Author(s):  
Gordon Conway ◽  
Ousmane Badiane ◽  
Katrin Glatzel

This chapter explores threats to food security. It reveals many challenges arising from a range of threats external to the farm household, including severe biological threats from pests, disease, and weeds. Moreover, healthy, fertile soils are the cornerstone of food security and rural livelihoods, but African soils are degrading. Water is just as important for the productivity of plants, and lack of water leads to chronic and acute stress. Indeed, Africa is already battling the impacts of climate change. Rising temperatures and variable rainfall are increasing the exposure of smallholders to drought, famine, and disease. Agriculture is an important emitter of greenhouse gases (GHGs), not only carbon dioxide but also such powerful gases as methane and nitrous oxide. In addition, there are often severe socioeconomic challenges, including unstable and high prices of basic commodities. Finally, conflicts cause disruption to food security.


Sign in / Sign up

Export Citation Format

Share Document