Counterion binding on coacervation of dioctyl sulfosuccinate in aqueous sodium chloride

Soft Matter ◽  
2019 ◽  
Vol 15 (18) ◽  
pp. 3771-3778 ◽  
Author(s):  
Shengbo Wang ◽  
Changlong Chen ◽  
Bor-Jier Shiau ◽  
Jeffrey H. Harwell

A simple coacervate-forming system consisting of sodium dioctyl sulfosuccinate (DOSS) in aqueous NaCl solution was investigated by turbidity measurement, electromotive force measurement (EMF), dynamic light scattering (DLS), and cryogenic transmission electron microscopy (cryo-TEM) to reveal the role of counterion binding in the microstructural changes behind the evolution of the coacervate phase.


2020 ◽  
Author(s):  
Chloé Seyrig ◽  
Patrick Le Griel ◽  
Nathan Cowieson ◽  
Javier PErez ◽  
Niki Baccile

Multilamellar wall vesicles (MLWV) are an interest class of polyelectrolyte-surfactant complexes (PESCs) for the wide applications ranging from house-care to biomedical products. If MLWV are generally obtained by a polyelectrolyte-driven vesicle agglutination under pseudoequilibrium conditions, the resulting phase is often a mixture of more than one structure. In this work, we show that MLWV can be massively and reproductively prepared from a recentlydeveloped method involving a pH-stimulated phase transition from a complex coacervate phase (Co). We employ a biobased pH-sensitive microbial glucolipid biosurfactant in the presence of a natural, or synthetic, polyamine (chitosan, poly-L-Lysine, polyethylene imine, polyallylamine). In situ small angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) show a systematic isostructural and isodimensional transition from the Co to the MLWV phase, while optical microscopy under polarized light experiments and cryo-TEM reveal a massive, virtually quantitative, presence of MLWV. Finally, the multilamellar wall structure is not perturbed by filtration and sonication, two typical methods employed to control size distribution in vesicles. In summary, this work highlights a new, robust, non-equilibrium phase-change method to develop biobased multilamellar wall vesicles, promising soft colloids with applications in the field of personal care, cosmetics and pharmaceutics among many others.



2020 ◽  
Author(s):  
Chloé Seyrig ◽  
Patrick Le Griel ◽  
Nathan Cowieson ◽  
Javier PErez ◽  
Niki Baccile

Multilamellar wall vesicles (MLWV) are an interest class of polyelectrolyte-surfactant complexes (PESCs) for the wide applications ranging from house-care to biomedical products. If MLWV are generally obtained by a polyelectrolyte-driven vesicle agglutination under pseudoequilibrium conditions, the resulting phase is often a mixture of more than one structure. In this work, we show that MLWV can be massively and reproductively prepared from a recentlydeveloped method involving a pH-stimulated phase transition from a complex coacervate phase (Co). We employ a biobased pH-sensitive microbial glucolipid biosurfactant in the presence of a natural, or synthetic, polyamine (chitosan, poly-L-Lysine, polyethylene imine, polyallylamine). In situ small angle X-ray scattering (SAXS) and cryogenic transmission electron microscopy (cryo-TEM) show a systematic isostructural and isodimensional transition from the Co to the MLWV phase, while optical microscopy under polarized light experiments and cryo-TEM reveal a massive, virtually quantitative, presence of MLWV. Finally, the multilamellar wall structure is not perturbed by filtration and sonication, two typical methods employed to control size distribution in vesicles. In summary, this work highlights a new, robust, non-equilibrium phase-change method to develop biobased multilamellar wall vesicles, promising soft colloids with applications in the field of personal care, cosmetics and pharmaceutics among many others.



Author(s):  
Benjamin F. Trump ◽  
Irene K. Berezesky ◽  
Raymond T. Jones

The role of electron microscopy and associated techniques is assured in diagnostic pathology. At the present time, most of the progress has been made on tissues examined by transmission electron microscopy (TEM) and correlated with light microscopy (LM) and by cytochemistry using both plastic and paraffin-embedded materials. As mentioned elsewhere in this symposium, this has revolutionized many fields of pathology including diagnostic, anatomic and clinical pathology. It began with the kidney; however, it has now been extended to most other organ systems and to tumor diagnosis in general. The results of the past few years tend to indicate the future directions and needs of this expanding field. Now, in addition to routine EM, pathologists have access to the many newly developed methods and instruments mentioned below which should aid considerably not only in diagnostic pathology but in investigative pathology as well.



Author(s):  
L. Tang ◽  
G. Thomas ◽  
M. R. Khan ◽  
S. L. Duan

Cr thin films are often used as underlayers for Co alloy magnetic thin films, such as Co1, CoNi2, and CoNiCr3, for high density longitudinal magnetic recording. It is belived that the role of the Cr underlayer is to control the growth and texture of the Co alloy magnetic thin films, and, then, to increase the in plane coercivity of the films. Although many epitaxial relationship between the Cr underlayer and the magnetic films, such as ﹛1010﹜Co/ {110﹜Cr4, ﹛2110﹜Co/ ﹛001﹜Cr5, ﹛0002﹜Co/﹛110﹜Cr6, have been suggested and appear to be related to the Cr thickness, the texture of the Cr underlayer itself is still not understood very well. In this study, the texture of a 2000 Å thick Cr underlayer on Nip/Al substrate for thin films of (Co75Ni25)1-xTix dc-sputtered with - 200 V substrate bias is investigated by electron microscopy.



Author(s):  
C. Ewins ◽  
J.R. Fryer

The preparation of thin films of organic molecules is currently receiving much attention because of the need to produce good quality thin films for molecular electronics. We have produced thin films of the polycyclic aromatic, perylene C10H12 by evaporation under high vacuum onto a potassium chloride (KCl) substrate. The role of substrate temperature in determining the morphology and crystallography of the films was then investigated by transmission electron microscopy (TEM).The substrate studied was the (001) face of a freshly cleaved crystal of KCl. The temperature of the KCl was controlled by an electric heater or a cold finger. The KCl was heated to 200°C under a vacuum of 10-6 torr and allowed to cool to the desired temperature. The perylene was then evaporated over a period of one minute from a molybdenum boat at a distance of 10cm from the KCl. The perylene thin film was then backed with an amorphous layer of carbon and floated onto copper microscope grids.



Author(s):  
Alan N. Hodgson

The hermaphrodite duct of pulmonate snails connects the ovotestis to the fertilization pouch. The duct is typically divided into three zones; aproximal duct which leaves the ovotestis, the middle duct (seminal vesicle) and the distal ovotestis duct. The seminal vesicle forms the major portion of the duct and is thought to store sperm prior to copulation. In addition the duct may also play a role in sperm maturation and degredation. Although the structure of the seminal vesicle has been described for a number of snails at the light microscope level there appear to be only two descriptions of the ultrastructure of this tissue. Clearly if the role of the hermaphrodite duct in the reproductive biology of pulmonatesis to be understood, knowledge of its fine structure is required.Hermaphrodite ducts, both containing and lacking sperm, of species of the terrestrial pulmonate genera Sphincterochila, Levantina, and Helix and the marine pulmonate genus Siphonaria were prepared for transmission electron microscopy by standard techniques.



2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bing Han ◽  
Yucheng Zou ◽  
Zhen Zhang ◽  
Xuming Yang ◽  
Xiaobo Shi ◽  
...  

AbstractCryogenic transmission electron microscopy (cryo-TEM) is a valuable tool recently proposed to investigate battery electrodes. Despite being employed for Li-based battery materials, cryo-TEM measurements for Na-based electrochemical energy storage systems are not commonly reported. In particular, elucidating the chemical and morphological behavior of the Na-metal electrode in contact with a non-aqueous liquid electrolyte solution could provide useful insights that may lead to a better understanding of metal cells during operation. Here, using cryo-TEM, we investigate the effect of fluoroethylene carbonate (FEC) additive on the solid electrolyte interphase (SEI) structure of a Na-metal electrode. Without FEC, the NaPF6-containing carbonate-based electrolyte reacts with the metal electrode to produce an unstable SEI, rich in Na2CO3 and Na3PO4, which constantly consumes the sodium reservoir of the cell during cycling. When FEC is used, the Na-metal electrode forms a multilayer SEI structure comprising an outer NaF-rich amorphous phase and an inner Na3PO4 phase. This layered structure stabilizes the SEI and prevents further reactions between the electrolyte and the Na metal.



Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 231
Author(s):  
Milos Sevarika ◽  
Marco Valerio Rossi Stacconi ◽  
Roberto Romani

Dryocosmus kuriphilus is a gall-inducing insect, which can cause significant damage on plants of the genus Castanea Mill., 1754. Antennae and ovipositor are the main sensory organs involved in the location of suitable oviposition sites. Antennal sensilla are involved in the host plant location, while ovipositor sensilla assess the suitability of the ovipositional bud. On both organs, diverse sensillar organs are present. Here, the distribution and ultrastructural organization of the sensilla were investigated by scanning and transmission electron microscopy. The antennae of D. kuriphilus are filiform and composed of 14 antennomeres, with the distal flagellomere bearing the highest number of sensilla. On the antennae, 6 sensilla types were found; sensilla chaetica, campaniformia, coeloconica-I, coeloconica-II, trichoidea and placoidea. The sensilla placoidea and trichoidea were the most abundant types. On the external walls of the ovipositor, gustatory and mechanoreceptive sensilla were observed. Internally, the egg channel hosted two additional sensory structures. The putative functional role of each sensilla in the context of insect’s ecology is discussed as well as the ovipositional mechanism used by this insect.



2021 ◽  
Vol 22 (14) ◽  
pp. 7548
Author(s):  
Artur Pinski ◽  
Alexander Betekhtin ◽  
Jolanta Kwasniewska ◽  
Lukasz Chajec ◽  
Elzbieta Wolny ◽  
...  

As cell wall proteins, the hydroxyproline-rich glycoproteins (HRGPs) take part in plant growth and various developmental processes. To fulfil their functions, HRGPs, extensins (EXTs) in particular, undergo the hydroxylation of proline by the prolyl-4-hydroxylases. The activity of these enzymes can be inhibited with 3,4-dehydro-L-proline (3,4-DHP), which enables its application to reveal the functions of the HRGPs. Thus, to study the involvement of HRGPs in the development of root hairs and roots, we treated seedlings of Brachypodium distachyon with 250 µM, 500 µM, and 750 µM of 3,4-DHP. The histological observations showed that the root epidermis cells and the cortex cells beneath them ruptured. The immunostaining experiments using the JIM20 antibody, which recognizes the EXT epitopes, demonstrated the higher abundance of this epitope in the control compared to the treated samples. The transmission electron microscopy analyses revealed morphological and ultrastructural features that are typical for the vacuolar-type of cell death. Using the TUNEL test (terminal deoxynucleotidyl transferase dUTP nick end labelling), we showed an increase in the number of nuclei with damaged DNA in the roots that had been treated with 3,4-DHP compared to the control. Finally, an analysis of two metacaspases’ gene activity revealed an increase in their expression in the treated roots. Altogether, our results show that inhibiting the prolyl-4-hydroxylases with 3,4-DHP results in a vacuolar-type of cell death in roots, thereby highlighting the important role of HRGPs in root hair development and root growth.



Soft Matter ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. 3096-3104
Author(s):  
Valeria Castelletto ◽  
Jani Seitsonen ◽  
Janne Ruokolainen ◽  
Ian W. Hamley

A designed surfactant-like peptide is shown, using a combination of cryogenic-transmission electron microscopy and small-angle X-ray scattering, to have remarkable pH-dependent self-assembly properties.



Sign in / Sign up

Export Citation Format

Share Document