Preparation of a thermally conductive biodegradable cellulose nanofiber/hydroxylated boron nitride nanosheet film: the critical role of edge-hydroxylation

2018 ◽  
Vol 6 (25) ◽  
pp. 11863-11873 ◽  
Author(s):  
Kai Wu ◽  
Ping Liao ◽  
Rongni Du ◽  
Qin Zhang ◽  
Feng Chen ◽  
...  

A biodegradable and flexible CNF/EOH-BNNS nanocomposite film shows largely improved thermal conductivity by means of a novel treatment of edge-hydroxylation.

2021 ◽  
Author(s):  
Zemin Ji ◽  
Wenyi Liu ◽  
Chenguang Ouyang ◽  
Yanbao Li

Polymer composites with high thermal conductivity (TC) as electronic packaging materials play a critical role to dissipate heat in microelectronic devices. Among several methods to improve their TC, connection of...


Nanomaterials ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 2544
Author(s):  
Cenkai Xu ◽  
Chengmei Wei ◽  
Qihan Li ◽  
Zihan Li ◽  
Zongxi Zhang ◽  
...  

Dielectric materials with excellent thermally conductive and mechanical properties can enable disruptive performance enhancement in the areas of advanced electronics and high-power devices. However, simultaneously achieving high thermal conductivity and mechanical strength for a single material remains a challenge. Herein, we report a new strategy for preparing mechanically strong and thermally conductive composite films by combining aramid nanofibers (ANFs) with graphene oxide (GO) and edge-hydroxylated boron nitride nanosheet (BNNS-OH) via a vacuum-assisted filtration and hot-pressing technique. The obtained ANF/GO/BNNS film exhibits an ultrahigh in-plane thermal conductivity of 33.4 Wm−1K−1 at the loading of 10 wt.% GO and 50 wt.% BNNS-OH, which is 2080% higher than that of pure ANF film. The exceptional thermal conductivity results from the biomimetic nacreous “brick-and-mortar” layered structure of the composite film, in which favorable contacting and overlapping between the BNNS-OH and GO is generated, resulting in tightly packed thermal conduction networks. In addition, an outstanding tensile strength of 93.3 MPa is achieved for the composite film, owing to the special biomimetic nacreous structure as well as the strong π−π interactions and extensive hydrogen bonding between the GO and ANFs framework. Meanwhile, the obtained composite film displays excellent thermostability (Td = 555 °C, Tg > 400 °C) and electrical insulation (4.2 × 1014 Ω·cm). We believe that these findings shed some light on the design and fabrication of multifunctional materials for thermal management applications.


2021 ◽  
Vol 4 (2) ◽  
pp. 2136-2142
Author(s):  
Xiao Hou ◽  
Zhenbang Zhang ◽  
Xianzhe Wei ◽  
Yue Qin ◽  
Guichen Song ◽  
...  

RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22846-22852 ◽  
Author(s):  
Seokgyu Ryu ◽  
Taeseob Oh ◽  
Jooheon Kim

Boron nitride (BN) particles surface-treated with different amounts of aniline trimer (AT) were used to prepare thermally conductive polymer composites with epoxy-terminated dimethylsiloxane (ETDS).


Sign in / Sign up

Export Citation Format

Share Document