Enormous suppression of phonon transport in silicon nanowires with five-fold twin boundary

2018 ◽  
Vol 6 (38) ◽  
pp. 18533-18542 ◽  
Author(s):  
Yufei Gao ◽  
Yanguang Zhou ◽  
Ming Hu

The five-fold twin boundary not only leads to much more intense boundary scattering, but also results in vibrational hybridization.

Nano Letters ◽  
2017 ◽  
Vol 17 (1) ◽  
pp. 276-283 ◽  
Author(s):  
Shyamprasad N. Raja ◽  
Reto Rhyner ◽  
Kantawong Vuttivorakulchai ◽  
Mathieu Luisier ◽  
Dimos Poulikakos

2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Amy M. Marconnet ◽  
Mehdi Asheghi ◽  
Kenneth E. Goodson

Silicon-on-insulator (SOI) technology has sparked advances in semiconductor and MEMs manufacturing and revolutionized our ability to study phonon transport phenomena by providing single-crystal silicon layers with thickness down to a few tens of nanometers. These nearly perfect crystalline silicon layers are an ideal platform for studying ballistic phonon transport and the coupling of boundary scattering with other mechanisms, including impurities and periodic pores. Early studies showed clear evidence of the size effect on thermal conduction due to phonon boundary scattering in films down to 20 nm thick and provided the first compelling room temperature evidence for the Casimir limit at room temperature. More recent studies on ultrathin films and periodically porous thin films are exploring the possibility of phonon dispersion modifications in confined geometries and porous films.


Volume 4 ◽  
2004 ◽  
Author(s):  
Y. Ju

Micro- and nanoscale energy transport in semiconductors is one of the critical research areas for emerging nano-electronics. Key features of phonon dispersion curves are re-examined, which motivates the use of phonon density of states obtained from ab initio calculations as a basis for constructing a semi-phenomenological thermal conductivity model. Thermal conductivity data on silicon nanowires are analyzed to identify dominant phonon modes. The consistency of the present thermal conductivity model is examined by comparing its prediction with the thermal conductivity data from bulk germanium samples with controlled amount of point defects. The thermal conductivity modeling study provides input parameters for a two-fluid phonon transport model for silicon and related semiconductors, which can play an important role in computer aided design of nanoelectronic devices and simulation of ultra-fast phenomena.


2016 ◽  
Vol 8 (6) ◽  
pp. 1216-1220
Author(s):  
Sang-Hyeok Cho ◽  
No-Won Park ◽  
Sang-Kwon Lee ◽  
Young-Gui Yoon

2016 ◽  
Vol 3 (8) ◽  
pp. 2759-2765 ◽  
Author(s):  
Xiangjun Liu ◽  
Gang Zhang ◽  
Qing-Xiang Pei ◽  
Yong-Wei Zhang

Author(s):  
Edward Dechaumphai ◽  
Renkun Chen

Phonon transport in two dimensional nano-membranes with periodic variations in acoustic properties, a.k.a. phononic crystals, has drawn tremendous interests recently due to their novel properties and potential applications in thermal energy conversion. Recent experiments have demonstrated drastically lower thermal conductivity than what one would expect from the Boltzmann transport equations (BTE) that describe phonon transport as particle diffusion. To understand the intriguing behavior, we used a partially coherent picture to model thermal transport in 2D phononic crystals. In this model, phonons with mean free paths longer than the characteristic size of the phononic crystals are treated as coherent waves. The finite difference time domain method is utilized to simulate the wave behavior and to obtain the phonon dispersion relations in phononic crystals. On the other hand, phonons with mean free paths shorter than the characteristic size are considered particles and are treated by BTE after taking the diffusive boundary scattering into account. Our result shows that the thermal conductivity reduces as the characteristic sizes decrease due to both the zone folding effect and the diffusive boundary scattering, which is consistent with the recent experimental results.


Author(s):  
Harutoshi Hagino ◽  
Koji Miyazaki

The size effect on thermal conduction due to phonon boundary scattering in films was studied as controlling heat conduction. Thermal rectifier was proposed as a new heat control concept by a ballistic rectifier relies on asymmetric scattering of phonons in asymmetric linear structure. We focus on the thermal rectification effect in membrane with asymmetric pores. We discussed on the thermal rectification effect from the calculation and thermal conductivity measurement of asymmetric structured membrane. Thermal conduction was calculated by using radiation calculation of ANSYS Fluent based on Boltzmann transport theory which is development of equation of phonon radiative transfer from view point of phonon mean free path and boundary scattering condition. In-plane thermal conductivities of free standing membranes with microsized asymmetric pores were measured by periodic laser heating measurement. From the result of calculation, phonons were transition to ballistic transport in the membranes with asymmetric shaped pores and thermal rectification effect was obtained on the condition of specular scattering because of the asymmetric back-scattering of ballistic phonons from asymmetric structure. The thermal rectification effect was increased with decreasing thickness of membrane shorter and shorter than mean free path of phonon. From the result of measurements, we were able to confirm the reduction of thermal conductivity based on ballistic phonon transport theory, but the strong thermal rectification effect was not confirmed.


Sign in / Sign up

Export Citation Format

Share Document