Fire-resistant, ultralight, superelastic and thermally insulated polybenzazole aerogels

2018 ◽  
Vol 6 (42) ◽  
pp. 20769-20777 ◽  
Author(s):  
Zhenchao Qian ◽  
Meng Yang ◽  
Rui Li ◽  
Dongdong Li ◽  
Jianling Zhang ◽  
...  

The polybenzazole aerogels exhibit superelasticity and flame resistance without additives. High thermal insulation and resistance to a 1000 °C flame has been achieved for the composite aerogels, showing potential in energy efficient areas.

2021 ◽  
Author(s):  
Fuyi Han ◽  
Hong Huang ◽  
Yan Wang ◽  
Lifang Liu

Abstract Cellulose nanofibril (CNF) aerogels have attracted great interests in recent years due to the low cost, sustainability and biocompatibility of raw CNFs. However, the poor thermal stability and flammable feature of CNF aerogels have limited their wider applications. In this paper, polydopamine/CNF composite aerogels with good comprehensive properties are fabricated by modification of CNF with polydopamine and metal coordination bonds crosslinking. The microstructure and properties of composite aerogels are thoroughly characterized by a variety of tests. It is found that the microstructure of aerogels are more regular and the compressive strength of aerogels are enhanced by the incorporation of polydopamine and Fe3+ crosslinking. Importantly, the thermal stability and flame resistance of aerogels are significantly improved, which permit the application of composite aerogels in high-temperature thermal insulation. In addition, the reversible characteristic of metal coordination bonds allows the water induced healing of fractured composite aerogels. This study is expected to provide information for future development of green and high-performance aerogels.


2021 ◽  
Author(s):  
Yingle Tao ◽  
Qiangqiang Li ◽  
Qiannan Wu ◽  
Haiqing Li

Localized eddy current heating delivered by metal foam embedded in a MOF monolith provides a novel, low-cost, and energy efficient way to overcome the thermal insulation nature of MOF monoliths and realize their highly efficient regenerations.


2018 ◽  
Vol 528 (1) ◽  
pp. 15-21 ◽  
Author(s):  
Liu Hong-li ◽  
He Xiang ◽  
Li Hong-yan ◽  
Li Jing ◽  
Li Ya-jing

2021 ◽  
Vol 03 (04) ◽  
pp. 70-78
Author(s):  
Tulakov Elmurad Salomovich ◽  
◽  
Matyokubov Bobur Pulatovich ◽  

If the surface temperature of any building material drops sharply without changing the humidity and the surface temperature is lower than the dew point temperature, dew-like water droplets are formed on the surface of this material. This condition is called condensing humidity condition. Condensation moisture formed on the surfaces of building materials and external barriers is slowly absorbed into the body of building materials over time, increasing the relative humidity of this structure. Condensation moisture can be observed when the temperature of the surfaces of external barrier structures drops sharply. This condition can be observed everywhere where the basement is connected to the outer walls of the basement. The article deals with the issue of thermal insulation and calculation of basement walls of modern energy-efficient buildings, which are widely used in the country and abroad.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
MinYi Luo ◽  
Jiayou Xu ◽  
Shu Lv ◽  
XueFeng Yuan ◽  
Xiaolan Liang

Polyvinyl alcohol- (PVA-) based aerogels have attracted widespread attention owing to their low cost, eco-friendliness, and low density. However, the applications of PVA-based aerogels are limited by their flammability. In this study, a flame retardant, ammonium polyphosphate (APP), and a biopolymer, chitosan (CS), were added to polyvinyl alcohol (PVA), and the polymer was further crosslinked using boric acid (H3BO3). In the PVA aerogels, the negatively charged APP and positively charged CS formed a polyelectrolyte complex (PEC) through ionic interaction. Cone calorimetry and vertical burning tests (UL-94) indicated that the PVA composite aerogels have excellent flame retardancy; they could decrease the heat release rate, total heat release rate, and carbon dioxide (CO2) generation. Both PVA/H3BO3 and APP-CS in the composite aerogel could be burned to carbon, and the foamed char layer could act together to impart the PVA composite aerogels with good flame retardancy. Further, the decrease in the temperature at the backside of the aerogels with increasing APP-CS content, as determined by the flame-spraying experiment, indicated that the PVA-based aerogels with APP-CS can also serve as thermal insulation materials. This work provides an effective and promising method for the preparation of PVA-based aerogels with good flame retardancy and thermal insulation property for construction materials.


2019 ◽  
Vol 8 (4) ◽  
pp. 7692-7694

This article presents theoretical studies on the mathematical modeling of the structure of constructive thermal insulation building materials. The developed principle block is a diagram of the methodology of structural and simulation modeling of cellular concrete.


Energies ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4692 ◽  
Author(s):  
Ainur Tukhtamisheva ◽  
Dinar Adilova ◽  
Karolis Banionis ◽  
Aurelija Levinskytė ◽  
Raimondas Bliūdžius

Kazakhstan is country rich in energy resources, but to raise the living standards of the country’s population, the government regulates prices of heating energy, which are significantly lower comparing to those in the global energy market. Such an approach encourages the construction of residential buildings without concern for their energy efficiency, which significantly increases energy consumption in the sector and leads to the increase of greenhouse gas emissions into the environment. Therefore, the aim of this study was to analyze the impact of regulated low prices of heating energy on long-term energy use in buildings, to determine optimal levels of building thermal insulation at current energy prices and following global energy price trends, and to demonstrate the impact of more efficient building thermal insulation on heating energy consumption from a long-time perspective. The cost-optimal method used in EU countries was chosen for the optimization of building thermal insulation and energy consumption to compare the impact of energy prices on the optimal thermal insulation of buildings. The results of the study showed that maintaining low energy prices hinders the implementation of energy-efficient solutions in buildings and does not provide an economic justification for prolonging the heating season by ensuring the quality of the indoor microclimate. As a practical result of this study, a recommendation was made to introduce optimal thermal insulation requirements in building regulations and to redistribute part of the energy subsidies for implementation of energy-efficient measures in the residential building sector.


Sign in / Sign up

Export Citation Format

Share Document