scholarly journals Metal Coordination Bonds Crosslinked Polydopamine/Cellulose Nanofibril Composite Aerogels with Significantly Improved Thermal Stability, Flame Resistance, and Thermal Insulation Properties

Author(s):  
Fuyi Han ◽  
Hong Huang ◽  
Yan Wang ◽  
Lifang Liu

Abstract Cellulose nanofibril (CNF) aerogels have attracted great interests in recent years due to the low cost, sustainability and biocompatibility of raw CNFs. However, the poor thermal stability and flammable feature of CNF aerogels have limited their wider applications. In this paper, polydopamine/CNF composite aerogels with good comprehensive properties are fabricated by modification of CNF with polydopamine and metal coordination bonds crosslinking. The microstructure and properties of composite aerogels are thoroughly characterized by a variety of tests. It is found that the microstructure of aerogels are more regular and the compressive strength of aerogels are enhanced by the incorporation of polydopamine and Fe3+ crosslinking. Importantly, the thermal stability and flame resistance of aerogels are significantly improved, which permit the application of composite aerogels in high-temperature thermal insulation. In addition, the reversible characteristic of metal coordination bonds allows the water induced healing of fractured composite aerogels. This study is expected to provide information for future development of green and high-performance aerogels.

2016 ◽  
Vol 36 (4) ◽  
pp. 329-362 ◽  
Author(s):  
Nurul F. Himma ◽  
Sofiatun Anisah ◽  
Nicholaus Prasetya ◽  
I Gede Wenten

Abstract Polypropylene (PP) is one of the most used polymers for microporous membrane fabrication due to its good thermal stability, chemical resistance, mechanical strength, and low cost. There have been numerous studies reporting the developments and applications of PP membranes. However, PP membrane with high performance is still a challenge. Thus, this article presents a comprehensive overview of the advances in the preparation, modification and application of PP membrane. The preparation methods of PP membrane are firstly reviewed, followed by the modification approaches of PP membrane. The modifications includes hydrophilic and superhydrophobic modification so that the PP membranes become more suitable to be applied either in aqueous applications or in non-aqueous ones. The fouling resistant of hydrophilized PP membrane and the wetting resistant of superhydrophobized PP membrane are then reviewed. Finally, special attention is given to the various potential applications and industrial outlook of the PP membranes.


2021 ◽  
Vol 9 (1) ◽  
pp. 260-269
Author(s):  
Huijuan Ran ◽  
Zhen Zhao ◽  
Xuewei Duan ◽  
Fuli Xie ◽  
Ruijun Han ◽  
...  

Three donor–acceptor (DA)-type pyrene-based blue emitters with good thermal stability and their applications in NUV OLEDs are demonstrated.


2019 ◽  
Vol 3 (1) ◽  
pp. 1145-1151 ◽  
Author(s):  
Quanling Yang ◽  
Junwei Yang ◽  
Zhaodongfang Gao ◽  
Bei Li ◽  
Chuanxi Xiong

2018 ◽  
Vol 31 (2) ◽  
pp. 238-246 ◽  
Author(s):  
Peng Yang ◽  
Li Yang ◽  
Junxiao Yang ◽  
Xuan Luo ◽  
Guanjun Chang

N-substituted metal-coordinated cross-linking polybenzimidazole pyridine sulfone, as novel class of high-performance functional polymers, has been obtained by the coordination of N-substituted polybenzimidazole pyridine sulfone (Py-N-PBIS) ligand with varying content of metallic ion (Co2+, Ni2+, Zn2+). The structures of the polymers are characterized by means of fourier transform infrared spectroscopy (FT-IR) and 1H nuclear magnetic resonance (1H NMR) spectroscopy, the results show good agreement with the proposed structures. Thermogravimetric analysis measurements exhibit that the metal coordination polymers possess good thermal stability with high thermal decomposition temperature (thermally stable up to 405–510°C). More importantly, the thermal decomposition temperature of Py-N-PBIS-(Co2+, Ni2+, Zn2+) can be nondestructively detected by taking advantage of the fluorescence quenching effect of metal coordination to 2,6-Bis(2-benzimidazolyl)pyridine structure.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2046
Author(s):  
Weilin Wang ◽  
Zongwei Tong ◽  
Ran Li ◽  
Dong Su ◽  
Huiming Ji

In order to improve the mechanical properties of SiO2 aerogels, PHMS/VTES-SiO2 composite aerogels (P/V-SiO2) were prepared. Using vinyltriethoxysilane (VTES) as a coupling agent, the PHMS/VTES complex was prepared by conducting an addition reaction with polyhydromethylsiloxane (PHMS) and VTES and then reacting it with inorganic silica sol to prepare the organic–inorganic composite aerogels. The PHMS/VTES complex forms a coating structure on the aerogel particles, enhancing the network structure of the composite aerogels. The composite aerogels can maintain the high specific surface area and excellent thermal insulation properties, and they have better mechanical properties. We studied the reaction mechanism during preparation and discussed the effects of the organic components on the structure and properties of the composite aerogels. The composite aerogels we prepared have a thermal conductivity of 0.03773 W·m−1·K−1 at room temperature and a compressive strength of 1.87 MPa. The compressive strength is several times greater than that of inorganic SiO2 aerogels. The organic–inorganic composite aerogels have excellent comprehensive properties, which helps to expand the application fields of silicon-based aerogels.


Polymers ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 909 ◽  
Author(s):  
Meng Zhang ◽  
Yi Zhang ◽  
Mingsong Chen ◽  
Qiang Gao ◽  
Jianzhang Li

To improve the performance of a soy flour (SF)-based adhesive, a low-cost hydroxymethyl melamine prepolymer (HMP) was synthesized and then used to modify the SF-based adhesive. The HMP was characterized, and the performance of the adhesive was evaluated, including its residual rate, functions, thermal stability, and fracture section. Plywood was fabricated to measure wet shear strength. The results indicated that the HMP preferentially reacted with polysaccharose in SF and formed a cross-linking network to improve the water resistance of the adhesive. This polysaccharose-based network also combined with the HMP self-polycondensation network and soy protein to form an interpenetrating network, which further improved the water resistance of the adhesive. With the addition of 9% HMP, the wet shear strength (63 °C) of the plywood was 1.21 MPa, which was 9.3 times that of the SF adhesive. With the HMP additive increased to 15%, the shear strength (100 °C) of the plywood was 0.79 MPa, which met the plywood requirement for exterior use (≥0.7 MPa) in accordance with Chinese National Standard (GB/T 9846.3-2004). With the addition of 9% and 15% HMP, the residual rates of the adhesive improved by 5.1% and 8.5%, respectively. The dense interpenetrating network structure improved the thermal stability of the resultant adhesive and created a compact fracture to prevent moisture intrusion, which further increased the water resistance of the adhesive.


2018 ◽  
Vol 913 ◽  
pp. 746-751
Author(s):  
Peng Yang ◽  
Jun Xiao Yang ◽  
Guan Jun Chang

N-substituted crosslinking polybenzimidazole pyridine sulfone, as novel high performance functional polymers, was prepared by the coordination of N-substituted polybenzimidazole pyridine sulfone (Py-N-PBIS) ligand with varying content of metallic ion (Co2+, Ni2+, Zn2+). The structures of the polymers were characterized by means of FT-IR and 1H NMR spectroscopy, and the results showed a good agreement with the proposed structures. TGA measurements exhibited that the crosslinking polymers possessed good thermal stability with high thermal decomposition temperatures (thermally stable up to 405-510 °C). Additionally, the thermal stability of the coordination polymers was improved constantly with the increasing of the content of Co2+, Ni2+ or Zn2+. The metal coordination crosslinking N-substituted polybenzimidazole pyridine sulfone could be considered as a novel high performance thermoset.


2018 ◽  
Vol 6 (42) ◽  
pp. 20769-20777 ◽  
Author(s):  
Zhenchao Qian ◽  
Meng Yang ◽  
Rui Li ◽  
Dongdong Li ◽  
Jianling Zhang ◽  
...  

The polybenzazole aerogels exhibit superelasticity and flame resistance without additives. High thermal insulation and resistance to a 1000 °C flame has been achieved for the composite aerogels, showing potential in energy efficient areas.


Sign in / Sign up

Export Citation Format

Share Document