Glass transition in temperature-responsive poly(butyl methacrylate) grafted polymer brushes. Impact of thickness and temperature on wetting, morphology, and cell growth

2018 ◽  
Vol 6 (11) ◽  
pp. 1613-1621 ◽  
Author(s):  
Yurij Stetsyshyn ◽  
Joanna Raczkowska ◽  
Ostap Lishchynskyi ◽  
Kamil Awsiuk ◽  
Joanna Zemla ◽  
...  

PBMA as temperature-responsive and biocompatible coating.

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 591 ◽  
Author(s):  
Monika Zygo ◽  
Miroslav Mrlik ◽  
Marketa Ilcikova ◽  
Martina Hrabalikova ◽  
Josef Osicka ◽  
...  

This study reports the utilization of controlled radical polymerization as a tool for controlling the stimuli-responsive capabilities of graphene oxide (GO) based hybrid systems. Various polymer brushes with controlled molecular weight and narrow molecular weight distribution were grafted from the GO surface by surface-initiated atom transfer radical polymerization (SI-ATRP). The modification of GO with poly(n-butyl methacrylate) (PBMA), poly(glycidyl methacrylate) (PGMA), poly(trimethylsilyloxyethyl methacrylate) (PHEMATMS) and poly(methyl methacrylate) (PMMA) was confirmed by thermogravimetric analysis (TGA) coupled with online Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). Various grafting densities of GO-based materials were investigated, and conductivity was elucidated using a four-point probe method. Raman shift and XPS were used to confirm the reduction of surface properties of the GO particles during SI-ATRP. The contact angle measurements indicated the changes in the compatibility of GOs with silicone oil, depending on the structure of the grafted polymer chains. The compatibility of the GOs with poly(dimethylsiloxane) was also investigated using steady shear rheology. The tunability of the electrorheological, as well as the photo-actuation capability, was investigated. It was shown that in addition to the modification of conductivity, the dipole moment of the pendant groups of the grafted polymer chains also plays an important role in the electrorheological (ER) performance. The compatibility of the particles with the polymer matrix, and thus proper particles dispersibility, is the most important factor for the photo-actuation efficiency. The plasticizing effect of the GO-polymer hybrid filler also has a crucial impact on the matrix stiffness and thus the ability to reversibly respond to the external light stimulation.


2019 ◽  
Vol 463 ◽  
pp. 1124-1133 ◽  
Author(s):  
Yurij Stetsyshyn ◽  
Kamil Awsiuk ◽  
Viktor Kusnezh ◽  
Joanna Raczkowska ◽  
Benedykt R. Jany ◽  
...  

2017 ◽  
Vol 407 ◽  
pp. 546-554 ◽  
Author(s):  
Joanna Raczkowska ◽  
Yurij Stetsyshyn ◽  
Kamil Awsiuk ◽  
Małgorzata Lekka ◽  
Monika Marzec ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1417
Author(s):  
Ostap Lishchynskyi ◽  
Yurij Stetsyshyn ◽  
Joanna Raczkowska ◽  
Kamil Awsiuk ◽  
Barbara Orzechowska ◽  
...  

In the present work, we have successfully prepared and characterized novel nanocomposite material exhibiting temperature-dependent surface wettability changes, based on grafted brush coatings of non-fouling poly(di(ethylene glycol)methyl ether methacrylate) (POEGMA) with the embedded CaCO3 nanoparticles. Grafted polymer brushes attached to the glass surface were prepared in a three-step process using atom transfer radical polymerization (ATRP). Subsequently, uniform CaCO3 nanoparticles (NPs) embedded in POEGMA-grafted brush coatings were synthesized using biomineralized precipitation from solutions of CaCl2 and Na2CO3. An impact of the low concentration of the embedded CaCO3 NPs on cell adhesion and growth depends strongly on the type of studied cell line: keratinocytes (HaCaT), melanoma (WM35) and osteoblastic (MC3T3-e1). Based on the temperature-responsive properties of grafted brush coatings and CaCO3 NPs acting as biologically active substrate, we hope that our research will lead to a new platform for tissue engineering with modified growth of the cells due to the release of biologically active substances from CaCO3 NPs and the ability to detach the cells in a controlled manner using temperature-induced changes of the brush.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kenichi Nagase ◽  
Yuta Umemoto ◽  
Hideko Kanazawa

AbstractTemperature-responsive chromatography using thermoresponsive polymers is innovative and can control analyte retention via column temperature. Analyte elution behavior in this type of chromatography depends on the modified thermoresponsive polymer and the structure of the base materials. In the present study, we examine the effect of the pore diameter of silica beads on analyte elution behavior in temperature-responsive chromatography. Poly(N-isopropylacrylamide-co-n-butyl methacrylate) hydrogel was applied to beads of various pore sizes: 7, 12, and 30 nm. Almost the same amount of copolymer hydrogel was applied to all beads, indicating that the efficiency of copolymer modification was independent of pore size. Analyte retention on prepared beads in a packed column was observed using steroids, benzodiazepines, and barbiturates as analytes. Analyte retention times increased with temperature on packed columns of 12- and 30-nm beads, whereas the column packed with 7-nm beads exhibited decreased retention times with increasing temperature. The difference in analyte elution behavior among the various pore sizes was attributed to analyte diffusion into the bead pores. These results demonstrate that bead pore diameter determines temperature-dependent elution behavior.


Sign in / Sign up

Export Citation Format

Share Document