Design and self-assembly of albumin nanoclusters as a dynamic-covalent targeting co-delivery and stimuli-responsive controlled release platform

2018 ◽  
Vol 6 (42) ◽  
pp. 6817-6830 ◽  
Author(s):  
Wen Liu ◽  
Jian Dai ◽  
Wei Xue

Stimuli-responsive nanomaterial-based drug delivery systems that are able to actively target the tumor microenvironment, enhance intratumoral accumulation and release drugs at target sites are attractive therapeutic platforms at present.

2019 ◽  
Vol 10 (29) ◽  
pp. 4031-4041 ◽  
Author(s):  
Jiaojiao Chen ◽  
Ming Wu ◽  
Hanitrarimalala Veroniaina ◽  
Subhankar Mukhopadhyay ◽  
Juequan Li ◽  
...  

Recently, interest in stimuli-responsive core–shell nanogels as drug delivery systems for tumor therapy has increased.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 947
Author(s):  
Dmitriy N. Shurpik ◽  
Lyaysan I. Makhmutova ◽  
Konstantin S. Usachev ◽  
Daut R. Islamov ◽  
Olga A. Mostovaya ◽  
...  

In this work, we have proposed a novel universal stimulus-sensitive nanosized polymer system based on decasubstituted macrocyclic structures—pillar[5]arenes and tetrazole-containing polymers. Decasubstituted pillar[5]arenes containing a large, good leaving tosylate, and phthalimide groups were first synthesized and characterized. Pillar[5]arenes containing primary and tertiary amino groups, capable of interacting with tetrazole-containing polymers, were obtained with high yield by removing the tosylate and phthalimide protection. According to the fluorescence spectroscopy data, a dramatic fluorescence enhancement in the pillar[5]arene/fluorescein/polymer system was observed with decreasing pH from neutral (pH = 7) to acidic (pH = 5). This indicates the destruction of associates and the release of the dye at a pH close to 5. The presented results open a broad range of opportunities for the development of new universal stimulus-sensitive drug delivery systems containing macrocycles and nontoxic tetrazole-based polymers.


2018 ◽  
Vol 364 ◽  
pp. 51-85 ◽  
Author(s):  
Haibin Gu ◽  
Shengdong Mu ◽  
Guirong Qiu ◽  
Xiong Liu ◽  
Li Zhang ◽  
...  

Bioimpacts ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Marziyeh Fathi ◽  
Azam Safary ◽  
Jaleh Barar

An important arena of the sophisticated nanosystems (NSs) is the combination of the responsive features of NSs with the biocatalytic properties of enzymes. The development of such smart drug delivery systems (DDSs) has seminal effectiveness in targeting, imaging, and monitoring of cancer. These NSs can exhibit site-specific delivery of the toxic cargo in response to the endogenous/exogenous stimuli. Enzyme responsive/targeted DDSs display enhanced accumulation of cargo molecules in the tumor microenvironment (TME) with a spatiotemporal controlled-release behavior. Based on the unique features of enzyme responsive/targeted DDSs, they offer incredible promise in overcoming some limitations of the currently used conventional DDSs. Taken all, targeting TME with the enzyme-responsive targeted DDSs may lead to versatile clinical outcomes in various malignancies.


Medicina ◽  
2021 ◽  
Vol 57 (11) ◽  
pp. 1209
Author(s):  
Dmitriy Berillo ◽  
Adilkhan Yeskendir ◽  
Zharylkasyn Zharkinbekov ◽  
Kamila Raziyeva ◽  
Arman Saparov

Peptide-based drug delivery systems have many advantages when compared to synthetic systems in that they have better biocompatibility, biochemical and biophysical properties, lack of toxicity, controlled molecular weight via solid phase synthesis and purification. Lysosomes, solid lipid nanoparticles, dendrimers, polymeric micelles can be applied by intravenous administration, however they are of artificial nature and thus may induce side effects and possess lack of ability to penetrate the blood-brain barrier. An analysis of nontoxic drug delivery systems and an establishment of prospective trends in the development of drug delivery systems was needed. This review paper summarizes data, mainly from the past 5 years, devoted to the use of peptide-based carriers for delivery of various toxic drugs, mostly anticancer or drugs with limiting bioavailability. Peptide-based drug delivery platforms are utilized as peptide–drug conjugates, injectable biodegradable particles and depots for delivering small molecule pharmaceutical substances (500 Da) and therapeutic proteins. Controlled drug delivery systems that can effectively deliver anticancer and peptide-based drugs leading to accelerated recovery without significant side effects are discussed. Moreover, cell penetrating peptides and their molecular mechanisms as targeting peptides, as well as stimuli responsive (enzyme-responsive and pH-responsive) peptides and peptide-based self-assembly scaffolds are also reviewed.


2021 ◽  
Vol 10 (1) ◽  
pp. 933-953
Author(s):  
Baranya Murugan ◽  
Suresh Sagadevan ◽  
Is Fatimah ◽  
Won-Chun Oh ◽  
Mohd Abd Motalib Hossain ◽  
...  

Abstract Nanomedicine is ongoing current research in the applications of nanotechnology for cancer therapy. Simply from a technology perspective, this field of research has an enormous broadening and success to date. Recently, nanomedicine has also made inroads in the treatment of cancer. Stimuli-responsive nanoparticles are an emerging field of research because its targeting capacity is of great interest in the treatment of cancer. The responsive nanoparticles are efficient in encountering different internal biological stimuli (acidic, pH, redox, and enzyme) and external stimuli (temperature, ultrasounds, magnetic field, and light), which are used as smart nanocarriers for delivery of the chemotherapeutic and imaging agents for cancer therapy. In-depth, the responsive nanocarrier that responds to the biological cues is of pronounced interest due to its capability to provide a controlled release profile at the tumor-specific site. The outlook of this review focuses on the stimuli-responsive nanocarrier drug delivery systems in sequence to address the biological challenges that need to be evaluated to overcome conventional cancer therapy.


Author(s):  
Prashant Malik ◽  
Neha Gulati ◽  
Raj Kaur Malik ◽  
Upendra Nagaich

Nanotechnology deal with the particle size in nanometers. Nanotechnology is ranging from extensions of conventional device physics to completely new approaches based upon molecular self assembly, from developing new materials with dimensions on the nanoscale to direct control of matter on the atomic scale. In nanotechnology mainly three types of nanodevices are described: carbon nanotubes, quantum dots and dendrimers. It is a recent technique used as small size particles to treat many diseases like cancer, gene therapy and used as diagnostics. Nanotechnology used to formulate targeted, controlled and sustained drug delivery systems. Pharmaceutical nanotechnology embraces applications of nanoscience to pharmacy as nanomaterials and as devices like drug delivery, diagnostic, imaging and biosensor materials. Pharmaceutical nanotechnology has provided more fine tuned diagnosis and focused treatment of disease at a molecular level.    


2020 ◽  
Vol 13 (4) ◽  
pp. 291-300 ◽  
Author(s):  
Srividya Gorantla ◽  
Tejashree Waghule ◽  
Vamshi Krishna Rapalli ◽  
Prem Prakash Singh ◽  
Sunil Kumar Dubey ◽  
...  

Hydrogels are aqueous gels composed of cross-linked networks of hydrophilic polymers. Stimuli-responsive based hydrogels have gained focus over the past 20 years for treating ophthalmic diseases. Different stimuli-responsive mechanisms are involved in forming polymer hydrogel networks, including change in temperature, pH, ions, and others including light, thrombin, pressure, antigen, and glucose-responsive. Incorporation of nanocarriers with these smart stimuli-responsive drug delivery systems that can extend the duration of action by increasing ocular bioavailability and reducing the dosing frequency. This review will focus on the hydrogel drug delivery systems highlighting the gelling mechanisms and emerging stimuli-responsive hydrogels from preformed gels, nanogels, and the role of advanced 3D printed hydrogels in vision-threatening diseases like age-related macular degeneration and retinitis pigmentosa. It also provides insight into the limitations of hydrogels along with the safety and biocompatibility of the hydrogel drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document