Carbohydrate microarray-based analysis of specific interactions between saccharides from algin and influenza A viral hemagglutinin

2019 ◽  
Vol 11 (29) ◽  
pp. 3641-3647
Author(s):  
Chanjuan Liu ◽  
Chao Li ◽  
Guoyun Li ◽  
Guangli Yu

A reliable and sensitive carbohydrate microarray-based method was developed to provide a promising platform for carbohydrate-based drug discovery.

2005 ◽  
Vol 288 (5) ◽  
pp. L831-L840 ◽  
Author(s):  
Mitchell R. White ◽  
Erika Crouch ◽  
Martin van Eijk ◽  
Max Hartshorn ◽  
Lily Pemberton ◽  
...  

The surfactant collectins, surfactant proteins A and D (SP-A and D), and scavenger receptor-rich glycoprotein 340 (gp340) inhibit influenza A virus (IAV) in the following order of potency: SP-D>gp340>SP-A. SP-D binds in a calcium-dependent manner to carbohydrate attachments on the viral hemagglutinin (HA) and neuraminidase (NA). By contrast, gp340 and SP-A act like mucins in that they provide sialic acid ligands that bind to the viral HA. In this study, SP-D, SP-A, and gp340 showed cooperative antiviral interactions. These cooperative effects were most evident in viral aggregation but were also observed in at least some hemagglutination inhibition and viral neutralization assays. The mechanism of binding between gp340 and SP-D was further characterized using monoclonal antibodies. Although gp340 can bind to SP-D at a site distinct from the mannan-binding site, binding of gp340 to SP-D did not contribute to cooperative antiviral interactions. SP-D and mucin showed cooperative interactions, apparently dependent on NA inhibition by SP-D. The commercial NA inhibitor oseltamivir had a similar effect and also enhanced the neutralizing activity of SP-A and bronchoalveolar lavage fluid. Hence, oseltamivir collaborates with innate immune proteins in inhibiting the initial infection of epithelial cells.


2019 ◽  
Vol 94 (1) ◽  
Author(s):  
Manon Laporte ◽  
Annelies Stevaert ◽  
Valerie Raeymaekers ◽  
Talitha Boogaerts ◽  
Inga Nehlmeier ◽  
...  

ABSTRACT Influenza A virus (IAV) and influenza B virus (IBV) cause yearly epidemics with significant morbidity and mortality. When zoonotic IAVs enter the human population, the viral hemagglutinin (HA) requires adaptation to achieve sustained virus transmission. In contrast, IBV has been circulating in humans, its only host, for a long period of time. Whether this entailed adaptation of IBV HA to the human airways is unknown. To address this question, we compared two seasonal IAVs (A/H1N1 and A/H3N2) and two IBVs (B/Victoria and B/Yamagata lineages) with regard to host-dependent activity of HA as the mediator of membrane fusion during viral entry. We first investigated proteolytic activation of HA by covering all type II transmembrane serine protease (TTSP) and kallikrein enzymes, many of which proved to be present in human respiratory epithelium. The IBV HA0 precursor is cleaved by a broader panel of TTSPs and activated with much higher efficiency than IAV HA0. Accordingly, knockdown of a single protease, TMPRSS2, abrogated spread of IAV but not IBV in human respiratory epithelial cells. Second, the HA fusion pH values proved similar for IBV and human-adapted IAVs (with one exception being the HA of 1918 IAV). Third, IBV HA exhibited higher expression at 33°C, a temperature required for membrane fusion by B/Victoria HA. This indicates pronounced adaptation of IBV HA to the mildly acidic pH and cooler temperature of human upper airways. These distinct and intrinsic features of IBV HA are compatible with extensive host adaptation during prolonged circulation of this respiratory virus in the human population. IMPORTANCE Influenza epidemics are caused by influenza A and influenza B viruses (IAV and IBV, respectively). IBV causes substantial disease; however, it is far less studied than IAV. While IAV originates from animal reservoirs, IBV circulates in humans only. Virus spread requires that the viral hemagglutinin (HA) is active and sufficiently stable in human airways. We resolve here how these mechanisms differ between IBV and IAV. Whereas human IAVs rely on one particular protease for HA activation, this is not the case for IBV. Superior activation of IBV by several proteases should enhance shedding of infectious particles. IBV HA exhibits acid stability and a preference for 33°C, indicating pronounced adaptation to the human upper airways, where the pH is mildly acidic and a cooler temperature exists. These adaptive features are rationalized by the long existence of IBV in humans and may have broader relevance for understanding the biology and evolution of respiratory viruses.


PLoS ONE ◽  
2011 ◽  
Vol 6 (12) ◽  
pp. e29120 ◽  
Author(s):  
Lei Zhu ◽  
Yuhuan Li ◽  
Shaohua Li ◽  
Haodong Li ◽  
Zongxing Qiu ◽  
...  

F1000Research ◽  
2014 ◽  
Vol 3 ◽  
pp. 233 ◽  
Author(s):  
Jürgen Bajorath

Compounds with apparent activity in a variety of assays might disable target proteins or produce false assay signals in the absence of specific interactions. In some instances, such effects are easy to detect, in others they are not. Observed promiscuity of compounds might be due to such non-specific assay artifacts. By contrast, promiscuity might also result from specific interactions with multiple targets. In the latter case, promiscuous compounds can be attractive candidates for certain therapeutic applications. However, compounds with artificial activity readouts are often not recognized and are further progressed, which presents a substantial problem for drug discovery. In this context, the concept of PAINS (pan-assay interference compounds) should be seriously considered, which makes it possible to eliminate flawed compounds from the discovery pipeline, even if their activities appear to be sound at a first glance.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jumpei Omi ◽  
Miho Watanabe-Takahashi ◽  
Katsura Igai ◽  
Eiko Shimizu ◽  
Ching-Yi Tseng ◽  
...  

AbstractThe emergence of drug-resistant influenza type A viruses (IAVs) necessitates the development of novel anti-IAV agents. Here, we target the IAV hemagglutinin (HA) protein using multivalent peptide library screens and identify PVF-tet, a peptide-based HA inhibitor. PVF-tet inhibits IAV cytopathicity and propagation in cells by binding to newly synthesized HA, rather than to the HA of the parental virus, thus inducing the accumulation of HA within a unique structure, the inducible amphisome, whose production from the autophagosome is accelerated by PVF-tet. The amphisome is also produced in response to IAV infection in the absence of PVF-tet by cells overexpressing ABC transporter subfamily A3, which plays an essential role in the maturation of multivesicular endosomes into the lamellar body, a lipid-sorting organelle. Our results show that the inducible amphisomes can function as a type of organelle-based anti-viral machinery by sequestering HA. PVF-tet efficiently rescues mice from the lethality of IAV infection.


2001 ◽  
Vol 75 (19) ◽  
pp. 9297-9301 ◽  
Author(s):  
Hideo Goto ◽  
Krisna Wells ◽  
Ayato Takada ◽  
Yoshihiro Kawaoka

ABSTRACT When expressed in vitro, the neuraminidase (NA) of A/WSN/33 (WSN) virus binds and sequesters plasminogen on the cell surface, leading to enhanced cleavage of the viral hemagglutinin. To obtain direct evidence that the plasminogen-binding activity of the NA enhances the pathogenicity of WSN virus, we generated mutant viruses whose NAs lacked plasminogen-binding activity because of a mutation at the C terminus, from Lys to Arg or Leu. In the presence of trypsin, these mutant viruses replicated similarly to wild-type virus in cell culture. By contrast, in the presence of plasminogen, the mutant viruses failed to undergo multiple cycles of replication while the wild-type virus grew normally. The mutant viruses showed attenuated growth in mice and failed to grow at all in the brain. Furthermore, another mutant WSN virus, possessing an NA with a glycosylation site at position 130 (146 in N2 numbering), leading to the loss of neurovirulence, failed to grow in cell culture in the presence of plasminogen. We conclude that the plasminogen-binding activity of the WSN NA determines its pathogenicity in mice.


Viruses ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 51 ◽  
Author(s):  
Fabiana Superti ◽  
Mariangela Agamennone ◽  
Agostina Pietrantoni ◽  
Maria Ammendolia

Bovine lactoferrin (bLf) is an iron-binding glycoprotein folded in two symmetric globular lobes (N- and C-lobes) with potent antimicrobial and immunomodulatory activities. Recently, we have shown that bLf, and in particular its C-lobe, interacts with influenza A virus hemagglutinin and prevents infection by different H1 and H3 viral subtypes. Influenza virus hemagglutinin (HA), and in particular its highly conserved fusion peptide involved in the low-pH-mediated fusion process, plays a significant role in the early steps of viral infection and represents an attractive target for the development of anti-influenza drugs. In the present research, we further investigated the influence of low pH on the interactions between bLf and influenza A H1N1 virus by different techniques, such as enzyme-linked immunosorbent assay, electron microscopy, hemolysis inhibition assay, and time course assay. Our results demonstrate that lactoferrin interaction with influenza hemagglutinin at low pH induces alterations that stabilize the conformation of the hemagglutinin, resulting in the inhibition of the fusion peptide activity. Taken together, our data allowed to better characterize the HA-specific inhibiting activity of bLf and to confirm HA as a good target for drug development.


Sign in / Sign up

Export Citation Format

Share Document