Intermolecular interactions and solvation effects of dimethylsulfoxide on type III deep eutectic solvents

2019 ◽  
Vol 21 (31) ◽  
pp. 17200-17208 ◽  
Author(s):  
Dhawal Shah ◽  
Ulan Mansurov ◽  
Farouq S. Mjalli

Intermolecular interactions within the mixtures of DMSO and reline, a typical type III Deep Eutectic Solvent (DES), composed of urea and choline chloride, is examined along with the mixtures' physical properties.

2021 ◽  
Vol 23 (3) ◽  
pp. 1300-1311 ◽  
Author(s):  
Dasom Jung ◽  
Jae Back Jung ◽  
Seulgi Kang ◽  
Ke Li ◽  
Inseon Hwang ◽  
...  

The in vitro and in vivo studies suggest that choline chloride-based deep eutectic solvents may not be considered as pure, safe mixtures even if they consist of safe compounds.


2020 ◽  
Vol 32 (4) ◽  
pp. 733-738 ◽  
Author(s):  
R. Manurung ◽  
Taslim ◽  
A.G.A. Siregar

Deep eutectic solvents (DESs) have numerous potential applications as cosolvents. In this study, use of DES as organic solvents for enzymatic biodiesel production from degumming palm oil (DPO) was investigated. Deep eutectic solvent was synthesized using choline chloride salt (ChCl) compounds with glycerol and 1,2-propanediol. Deep eutectic solvent was characterized by viscosity, density, pH and freezing values, which were tested for effectiveness by enzymatic reactions for the production of palm biodiesel with raw materials DPO. Deep eutectic solvent of ChCl and glycerol produced the highest biodiesel yield (98.98%); weight of DES was only 0.5 % of that of the oil. In addition, the use of DES maintained the activity and stability of novozym enzymes, which was assessed as the yield until the 6th usage, which was 95.07 % biodiesel yield compared with the yield without using DES. Hence, using DES, glycerol in enzymatic biodiesel production had high potentiality as an organic solvent for palm oil biodiesel production


BioResources ◽  
2017 ◽  
Vol 12 (4) ◽  
pp. 7301-7310
Author(s):  
Veronika Majová ◽  
Silvia Horanová ◽  
Andrea Škulcová ◽  
Jozef Šima ◽  
Michal Jablonský

This study aimed to resolve the issue of the lack of detailed understanding of the effect of initial lignin content in hardwood kraft pulps on pulp delignification by deep eutectic solvents. The authors used Kappa number of the concerned pulp, intrinsic viscosity, and selectivity and efficiency of delignification as the parameters of the effect. The pulp (50 g oven dry pulp) was treated with four different DESs systems based on choline chloride with lactic acid (1:9), oxalic acid (1:1), malic acid (1:1), and system alanine:lactic acid (1:9); the results were compared to those reached by oxygen delignification. The results showed that the pulp with a higher initial lignin content had a greater fraction of easily removed lignin fragments.


Environments ◽  
2020 ◽  
Vol 7 (11) ◽  
pp. 97
Author(s):  
Chiau Yuan Lim ◽  
Mohd Faridzuan Majid ◽  
Sarrthesvaarni Rajasuriyan ◽  
Hayyiratul Fatimah Mohd Zaid ◽  
Khairulazhar Jumbri ◽  
...  

Extractive catalytic oxidative desulfurization (ECODS) is the one of the recent methods used in fuel desulfurization which involved the use of catalyst in the oxidative desulfurization of diesel fuel. This study is aimed to test the effectiveness of synthesized choline chloride (ChCl) based deep eutectic solvent (DES) in fuel desulfurization via ECODS method, with the presence of graphene oxide (GO) as catalyst and hydrogen peroxide (H2O2) as oxidant. In this study, 16 DESs based on choline chloride were synthesized using glycerol (GLY), ethylene glycol (EG), tetraethylene glycol (TEG) and polyethylene glycol (PEG). The characterization of the synthesized DES was carried out via Fourier transform infrared spectroscopy (FTIR) analysis, density, and viscosity determination. According to the screening result, ChCl-PEG (1:4) was found to be the most effective DES for desulfurization using ECODS method, with a removal of up to 47.4% of sulfur containing compounds in model oil in just 10 min per cycle after the optimization of the reaction parameters, and up to 95% desulfurization efficiency could be achieved by six cycles of desulfurization. It is found that the addition of GO as catalyst does not increase the desulfurization performance drastically; hence, future studies for the desulfurization performance of DESs made up from ChCl and PEG and its derivatives can be done simply by using extraction desulfurization (EDS) method instead of ECODS method, for cost reduction purpose and easier regulation of DES waste into environment.


2016 ◽  
Vol 18 (3) ◽  
pp. 826-833 ◽  
Author(s):  
Xavier Marset ◽  
Juana M. Pérez ◽  
Diego J. Ramón

The synthesis of different tetrahydroisoquinolines using choline chloride : ethylene glycol as a deep eutectic solvent (DES) and copper(ii) oxide impregnated on magnetite as a catalyst has been accomplished successfully.


2020 ◽  
Vol 15 (2) ◽  
pp. 1934578X1990070 ◽  
Author(s):  
Weida Zhang ◽  
Shaobo Cheng ◽  
Xiaona Zhai ◽  
Junshe Sun ◽  
Xuefang Hu ◽  
...  

Deep eutectic solvents (DESs) were proposed for the extraction of polysaccharides from Poria cocos (PCPs). Six types of DESs were prepared, and the DES composed of choline chloride and oxalic acid was proved to be suitable. Based on the results of single-factor test, the Box-Behnken experimental design with response surface methodology was carried out, giving the optimal extraction conditions including mole ratio of 1:2 (choline chloride:oxalic acid) and extraction 15 minutes at 100°C. Under the optimal extraction conditions, the extraction yield (46.24% ± 0.13%) was 8.6 times higher than that of hot water. The reusability of DES was demonstrated by a 6-run test, and an extraction yield of PCP was 38.40% ± 0.23% after reusing for 6 times without adding any additional chemicals. Moreover, molecular weight distributions of the resulting PCP were analyzed, and then mainly distributed in the range of 753 to 3578 g/mol. Therefore, DESs were proved to be an excellent extraction solvent alternative to the extraction of PCP.


2017 ◽  
Author(s):  
Xifeng Zhang ◽  
Ji Zhang

Deep eutectic solvents (DESs) are new green solvents that have attracted the attention of the scientific community mainly due to their unique properties and special characteristics, which are different from those of traditional solvents.A method based on ultrasonically assisted deep eutectic solvent aqueous two-phase systems( UAE-DES-ATPS) was developed for extracting ursolic acid (UA) from Cynomorium songaricum Rupr. Four different types of choline chloride-based DESs were prepared.Choline chloride-glucose (ChCl-Glu) exhibited good selective extraction ability. An optimum DES-ATPS of 36% (w/w) ChCl-Glu and 25% (w/w) K2HPO4 was considered to be a satisfactory system for extracting UA. Response surface methodology (RSM) method was used to optimize the extraction of UA using UAE-DES-ATPS. The optimum ultrasound-assisted conditions were as follows: solvent to solid ratio of 15:1 (g/g), ultrasound power of 470 W, and extraction time of 54 min. Compared with the conventional UAE method, the yields were basically the same, but the presented method had higher purity. The structure of UA did not change between pure UA and UA in the upper phase by UV–vis and FT-IR. This approach using ChCl-based DES-ATPS as a novel extraction system and ultrasound as a source of energy provided better choice for the separation of active components from other natural products.


2020 ◽  
Author(s):  
◽  
Somiame Itseme Okuofu

Bambara and cowpea are important pulses grown in semi-arid South Africa due to their balanced nutrient profile and drought resilient capacity. The haulm is the lignocellulosic residue obtained after grain harvest and are rich in carbohydrates. However, these haulms are underutilised and under researched. The aim of the study, therefore, was to investigate the potential to valorise bambara haulms (BGH) and cowpea haulms (CH) to bioethanol which is the most promising biofuel with commercial prospects currently. The structural and chemical composition of BGH and CH was elucidated using techniques such as compositional analysis, XRD, FTIR, ICP-AES, and SEM. Results indicated a volatile matter and fixed carbon mass fraction of 77.70% and 13.15% (w/w) in BGH and 76.16% and 16.26% (w/w) in CH respectively. The polysaccharides make up the largest fraction (51%), followed by extractives (> 20%), while the lignin in BGH (12%) and CH (10%) was low. X-ray diffraction pattern showed a higher percentage of amorphous regions in BGH (78%) than CH (56%). CH was then subjected to dilute acid pretreatment (DAP) to enhance biosugar production for bioethanol fermentation. The effects of operational factors for DAP including temperature, time, and acid concentration on sugar yield and inhibitor formation was investigated and optimised using response surface methodology (RSM). The solid recovered after DAP was subjected to prehydrolysis with simultaneous saccharification and fermentation (PSSF). In addition, the pretreatment hydrolysate was detoxified and fermented to ethanol using cocultures of Saccharomyces cerevisiae BY4743 and Scheffersomyces stipitis wild type (PsY633). A total ethanol titre of 15.67 g/L was obtained corresponding to 75% conversion efficiency. On the other hand, BGH was subjected to deep eutectic solvent (DES) pretreatment. Five deep eutectic solvents were prepared and screened for their effectiveness in improving enzymatic sugar yield. This was achieved by pretreating BGH with each DES followed by a 48 h enzymatic saccharification. Choline chloride – lactic acid (ChCl-LA) treatment provided the most promising result and was further optimised by investigating the effect of different temperatures and time on cellulose loss and enzymatic sugar yield. ChCl-LA pretreatment at 100°C for 1 h was observed to be the best condition for maximum sugar recovery. The hydrolysate thus obtained was concentrated and fermented for 72 h with S. cerevisiae BY4743. A maximum ethanol yield of 11.57 g/L was obtained. From the results, it is evident that bambara and cowpea haulm are promising substrates for bioethanol production. Dilute acid hydrolysis was shown to be effective in the pretreatment of CH with over 85% of the theoretical sugar recoverable for conversion to bioethanol. In addition, deep eutectic solvents are effective media for breaking the recalcitrance in BGH to achieve high sugar yield for conversion to bioethanol. However, further studies are required to reduce cellulose loss during pretreatment to improve bioethanol yield.


Author(s):  
F.I. Danilov ◽  
◽  
Y.D. Rublova ◽  
V.S. Protsenko ◽  
◽  
...  

Adsorption of the components of deep eutectic solvent ethaline (ethylene glycol and choline chloride) on mercury electrode is investigated by electrocapillary measurements. It is determined that choline cations are mainly adsorbed on the negatively charged surface of mercury, while chloride anions are mainly adsorbed on the positively charged surface. The corresponding values of free energies of adsorption and interactions of adsorbate and solvent with metal are calculated and analyzed. An anomalous increase in both the apparent value of the adsorption at limiting coverage and the free energy of the interaction of the choline cation with mercury is observed in the transition from aqueous to ethylene glycol solutions, which is explained by the formation of complexes in a surface layer that exist in deep eutectic solvents and are capable of adsorbing on the electrode surface. The free energy of interaction with the mercury surface is higher than the energy of squeezing out from the volume of the solution onto its surface, which indicates the specific interaction of the adsorbate with mercury. A marked decrease in interfacial tension on both branches of the electrocapillary curve is observed when water is added to ethaline.


2021 ◽  
Vol 33 (5) ◽  
pp. 1115-1119
Author(s):  
R. Manurung ◽  
H. Silalahi ◽  
O. Winda ◽  
A.G. Siregar

The high cellulose content in cassava peel has an opportunity to produce bio-based chemical products in 5-hydroxymethylfurfural (5-HMF) form. This study aimed to determine the optimum conditions of glucose dehydration reaction as a result of hydrolysis of the best cassava peel cellulose. The variables observed in this study were H2SO4 catalyst concentrations in the hydrolysis reaction, temperature and amount of deep eutectic solvents based on choline chloride/citric acid. The optimum dehydration reaction conditions in this study was the glucose:deep eutectic solvents mass ratio of 1:6 at the reaction temperature of 80 ºC. The highest yield of 64.50% at an initial glucose concentration of 5.70% using a 1.5% H2SO4 catalyst during the hydrolysis of cassava peel cellulose. The results obtained in this study indicated that addition of choline chloride/citric acid as deep eutectic solvent can increase the yield of 5-HMF.


Sign in / Sign up

Export Citation Format

Share Document